Metamath Proof Explorer


Theorem pmss12g

Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Assertion pmss12g A C B D C V D W A 𝑝𝑚 B C 𝑝𝑚 D

Proof

Step Hyp Ref Expression
1 xpss12 B D A C B × A D × C
2 1 ancoms A C B D B × A D × C
3 sstr f B × A B × A D × C f D × C
4 3 expcom B × A D × C f B × A f D × C
5 2 4 syl A C B D f B × A f D × C
6 5 anim2d A C B D Fun f f B × A Fun f f D × C
7 6 adantr A C B D C V D W Fun f f B × A Fun f f D × C
8 ssexg A C C V A V
9 ssexg B D D W B V
10 elpmg A V B V f A 𝑝𝑚 B Fun f f B × A
11 8 9 10 syl2an A C C V B D D W f A 𝑝𝑚 B Fun f f B × A
12 11 an4s A C B D C V D W f A 𝑝𝑚 B Fun f f B × A
13 elpmg C V D W f C 𝑝𝑚 D Fun f f D × C
14 13 adantl A C B D C V D W f C 𝑝𝑚 D Fun f f D × C
15 7 12 14 3imtr4d A C B D C V D W f A 𝑝𝑚 B f C 𝑝𝑚 D
16 15 ssrdv A C B D C V D W A 𝑝𝑚 B C 𝑝𝑚 D