Metamath Proof Explorer


Theorem pmsspw

Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion pmsspw A 𝑝𝑚 B 𝒫 B × A

Proof

Step Hyp Ref Expression
1 n0i f A 𝑝𝑚 B ¬ A 𝑝𝑚 B =
2 fnpm 𝑝𝑚 Fn V × V
3 2 fndmi dom 𝑝𝑚 = V × V
4 3 ndmov ¬ A V B V A 𝑝𝑚 B =
5 1 4 nsyl2 f A 𝑝𝑚 B A V B V
6 elpmg A V B V f A 𝑝𝑚 B Fun f f B × A
7 5 6 syl f A 𝑝𝑚 B f A 𝑝𝑚 B Fun f f B × A
8 7 ibi f A 𝑝𝑚 B Fun f f B × A
9 8 simprd f A 𝑝𝑚 B f B × A
10 velpw f 𝒫 B × A f B × A
11 9 10 sylibr f A 𝑝𝑚 B f 𝒫 B × A
12 11 ssriv A 𝑝𝑚 B 𝒫 B × A