Step |
Hyp |
Ref |
Expression |
1 |
|
pmtr3ncom.t |
|
2 |
|
hashge3el3dif |
|
3 |
|
simprl |
|
4 |
|
prssi |
|
5 |
4
|
adantr |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplll |
|
8 |
|
simplr |
|
9 |
8
|
adantr |
|
10 |
|
simpr1 |
|
11 |
|
pr2nelem |
|
12 |
7 9 10 11
|
syl3anc |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
1 14
|
pmtrrn |
|
16 |
3 6 13 15
|
syl3anc |
|
17 |
|
prssi |
|
18 |
17
|
ad5ant23 |
|
19 |
|
simplr |
|
20 |
|
simpr3 |
|
21 |
|
pr2nelem |
|
22 |
9 19 20 21
|
syl3anc |
|
23 |
22
|
adantr |
|
24 |
1 14
|
pmtrrn |
|
25 |
3 18 23 24
|
syl3anc |
|
26 |
|
df-3an |
|
27 |
26
|
biimpri |
|
28 |
27
|
ad2antrr |
|
29 |
|
simplr |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 30 31
|
pmtr3ncomlem2 |
|
33 |
3 28 29 32
|
syl3anc |
|
34 |
|
coeq2 |
|
35 |
|
coeq1 |
|
36 |
34 35
|
neeq12d |
|
37 |
|
coeq1 |
|
38 |
|
coeq2 |
|
39 |
37 38
|
neeq12d |
|
40 |
36 39
|
rspc2ev |
|
41 |
16 25 33 40
|
syl3anc |
|
42 |
41
|
exp31 |
|
43 |
42
|
rexlimdva |
|
44 |
43
|
rexlimivv |
|
45 |
2 44
|
mpcom |
|