| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtr3ncom.t |  | 
						
							| 2 |  | hashge3el3dif |  | 
						
							| 3 |  | simprl |  | 
						
							| 4 |  | prssi |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | simplll |  | 
						
							| 8 |  | simplr |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | simpr1 |  | 
						
							| 11 |  | enpr2 |  | 
						
							| 12 | 7 9 10 11 | syl3anc |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 14 | pmtrrn |  | 
						
							| 16 | 3 6 13 15 | syl3anc |  | 
						
							| 17 |  | prssi |  | 
						
							| 18 | 17 | ad5ant23 |  | 
						
							| 19 |  | simplr |  | 
						
							| 20 |  | simpr3 |  | 
						
							| 21 |  | enpr2 |  | 
						
							| 22 | 9 19 20 21 | syl3anc |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 1 14 | pmtrrn |  | 
						
							| 25 | 3 18 23 24 | syl3anc |  | 
						
							| 26 |  | df-3an |  | 
						
							| 27 | 26 | biimpri |  | 
						
							| 28 | 27 | ad2antrr |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 1 30 31 | pmtr3ncomlem2 |  | 
						
							| 33 | 3 28 29 32 | syl3anc |  | 
						
							| 34 |  | coeq2 |  | 
						
							| 35 |  | coeq1 |  | 
						
							| 36 | 34 35 | neeq12d |  | 
						
							| 37 |  | coeq1 |  | 
						
							| 38 |  | coeq2 |  | 
						
							| 39 | 37 38 | neeq12d |  | 
						
							| 40 | 36 39 | rspc2ev |  | 
						
							| 41 | 16 25 33 40 | syl3anc |  | 
						
							| 42 | 41 | exp31 |  | 
						
							| 43 | 42 | rexlimdva |  | 
						
							| 44 | 43 | rexlimivv |  | 
						
							| 45 | 2 44 | mpcom |  |