Description: Lemma 1 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtr3ncom.t | |
|
pmtr3ncom.f | |
||
pmtr3ncom.g | |
||
Assertion | pmtr3ncomlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtr3ncom.t | |
|
2 | pmtr3ncom.f | |
|
3 | pmtr3ncom.g | |
|
4 | necom | |
|
5 | 4 | biimpi | |
6 | 5 | 3ad2ant3 | |
7 | 6 | 3ad2ant3 | |
8 | simp1 | |
|
9 | simp1 | |
|
10 | 9 | 3ad2ant2 | |
11 | simp2 | |
|
12 | 11 | 3ad2ant2 | |
13 | 10 12 | prssd | |
14 | simp1 | |
|
15 | 14 | 3ad2ant3 | |
16 | pr2nelem | |
|
17 | 10 12 15 16 | syl3anc | |
18 | 1 | pmtrf | |
19 | 8 13 17 18 | syl3anc | |
20 | 2 | feq1i | |
21 | 19 20 | sylibr | |
22 | 21 | ffnd | |
23 | fvco2 | |
|
24 | 22 10 23 | syl2anc | |
25 | 2 | fveq1i | |
26 | 10 12 15 | 3jca | |
27 | 1 | pmtrprfv | |
28 | 8 26 27 | syl2anc | |
29 | 25 28 | eqtrid | |
30 | 29 | fveq2d | |
31 | 3 | fveq1i | |
32 | simp3 | |
|
33 | 32 | 3ad2ant2 | |
34 | simp3 | |
|
35 | 34 | 3ad2ant3 | |
36 | 12 33 35 | 3jca | |
37 | 1 | pmtrprfv | |
38 | 8 36 37 | syl2anc | |
39 | 31 38 | eqtrid | |
40 | 24 30 39 | 3eqtrd | |
41 | 11 32 | prssd | |
42 | 41 | 3ad2ant2 | |
43 | pr2nelem | |
|
44 | 12 33 35 43 | syl3anc | |
45 | 1 | pmtrf | |
46 | 3 | feq1i | |
47 | 45 46 | sylibr | |
48 | 8 42 44 47 | syl3anc | |
49 | 48 | ffnd | |
50 | fvco2 | |
|
51 | 49 10 50 | syl2anc | |
52 | 3 | fveq1i | |
53 | id | |
|
54 | 3anrot | |
|
55 | 54 | biimpi | |
56 | 3anrot | |
|
57 | necom | |
|
58 | necom | |
|
59 | biid | |
|
60 | 57 58 59 | 3anbi123i | |
61 | 56 60 | sylbbr | |
62 | 1 | pmtrprfv3 | |
63 | 53 55 61 62 | syl3an | |
64 | 52 63 | eqtrid | |
65 | 64 | fveq2d | |
66 | 51 65 29 | 3eqtrd | |
67 | 7 40 66 | 3netr4d | |