Step |
Hyp |
Ref |
Expression |
1 |
|
pmtr3ncom.t |
|
2 |
|
pmtr3ncom.f |
|
3 |
|
pmtr3ncom.g |
|
4 |
|
necom |
|
5 |
4
|
biimpi |
|
6 |
5
|
3ad2ant3 |
|
7 |
6
|
3ad2ant3 |
|
8 |
|
simp1 |
|
9 |
|
simp1 |
|
10 |
9
|
3ad2ant2 |
|
11 |
|
simp2 |
|
12 |
11
|
3ad2ant2 |
|
13 |
10 12
|
prssd |
|
14 |
|
simp1 |
|
15 |
14
|
3ad2ant3 |
|
16 |
|
pr2nelem |
|
17 |
10 12 15 16
|
syl3anc |
|
18 |
1
|
pmtrf |
|
19 |
8 13 17 18
|
syl3anc |
|
20 |
2
|
feq1i |
|
21 |
19 20
|
sylibr |
|
22 |
21
|
ffnd |
|
23 |
|
fvco2 |
|
24 |
22 10 23
|
syl2anc |
|
25 |
2
|
fveq1i |
|
26 |
10 12 15
|
3jca |
|
27 |
1
|
pmtrprfv |
|
28 |
8 26 27
|
syl2anc |
|
29 |
25 28
|
eqtrid |
|
30 |
29
|
fveq2d |
|
31 |
3
|
fveq1i |
|
32 |
|
simp3 |
|
33 |
32
|
3ad2ant2 |
|
34 |
|
simp3 |
|
35 |
34
|
3ad2ant3 |
|
36 |
12 33 35
|
3jca |
|
37 |
1
|
pmtrprfv |
|
38 |
8 36 37
|
syl2anc |
|
39 |
31 38
|
eqtrid |
|
40 |
24 30 39
|
3eqtrd |
|
41 |
11 32
|
prssd |
|
42 |
41
|
3ad2ant2 |
|
43 |
|
pr2nelem |
|
44 |
12 33 35 43
|
syl3anc |
|
45 |
1
|
pmtrf |
|
46 |
3
|
feq1i |
|
47 |
45 46
|
sylibr |
|
48 |
8 42 44 47
|
syl3anc |
|
49 |
48
|
ffnd |
|
50 |
|
fvco2 |
|
51 |
49 10 50
|
syl2anc |
|
52 |
3
|
fveq1i |
|
53 |
|
id |
|
54 |
|
3anrot |
|
55 |
54
|
biimpi |
|
56 |
|
3anrot |
|
57 |
|
necom |
|
58 |
|
necom |
|
59 |
|
biid |
|
60 |
57 58 59
|
3anbi123i |
|
61 |
56 60
|
sylbbr |
|
62 |
1
|
pmtrprfv3 |
|
63 |
53 55 61 62
|
syl3an |
|
64 |
52 63
|
eqtrid |
|
65 |
64
|
fveq2d |
|
66 |
51 65 29
|
3eqtrd |
|
67 |
7 40 66
|
3netr4d |
|