| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtr3ncom.t |  | 
						
							| 2 |  | pmtr3ncom.f |  | 
						
							| 3 |  | pmtr3ncom.g |  | 
						
							| 4 |  | necom |  | 
						
							| 5 | 4 | biimpi |  | 
						
							| 6 | 5 | 3ad2ant3 |  | 
						
							| 7 | 6 | 3ad2ant3 |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp1 |  | 
						
							| 10 | 9 | 3ad2ant2 |  | 
						
							| 11 |  | simp2 |  | 
						
							| 12 | 11 | 3ad2ant2 |  | 
						
							| 13 | 10 12 | prssd |  | 
						
							| 14 |  | simp1 |  | 
						
							| 15 | 14 | 3ad2ant3 |  | 
						
							| 16 |  | enpr2 |  | 
						
							| 17 | 10 12 15 16 | syl3anc |  | 
						
							| 18 | 1 | pmtrf |  | 
						
							| 19 | 8 13 17 18 | syl3anc |  | 
						
							| 20 | 2 | feq1i |  | 
						
							| 21 | 19 20 | sylibr |  | 
						
							| 22 | 21 | ffnd |  | 
						
							| 23 |  | fvco2 |  | 
						
							| 24 | 22 10 23 | syl2anc |  | 
						
							| 25 | 2 | fveq1i |  | 
						
							| 26 | 10 12 15 | 3jca |  | 
						
							| 27 | 1 | pmtrprfv |  | 
						
							| 28 | 8 26 27 | syl2anc |  | 
						
							| 29 | 25 28 | eqtrid |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 3 | fveq1i |  | 
						
							| 32 |  | simp3 |  | 
						
							| 33 | 32 | 3ad2ant2 |  | 
						
							| 34 |  | simp3 |  | 
						
							| 35 | 34 | 3ad2ant3 |  | 
						
							| 36 | 12 33 35 | 3jca |  | 
						
							| 37 | 1 | pmtrprfv |  | 
						
							| 38 | 8 36 37 | syl2anc |  | 
						
							| 39 | 31 38 | eqtrid |  | 
						
							| 40 | 24 30 39 | 3eqtrd |  | 
						
							| 41 | 11 32 | prssd |  | 
						
							| 42 | 41 | 3ad2ant2 |  | 
						
							| 43 |  | enpr2 |  | 
						
							| 44 | 12 33 35 43 | syl3anc |  | 
						
							| 45 | 1 | pmtrf |  | 
						
							| 46 | 3 | feq1i |  | 
						
							| 47 | 45 46 | sylibr |  | 
						
							| 48 | 8 42 44 47 | syl3anc |  | 
						
							| 49 | 48 | ffnd |  | 
						
							| 50 |  | fvco2 |  | 
						
							| 51 | 49 10 50 | syl2anc |  | 
						
							| 52 | 3 | fveq1i |  | 
						
							| 53 |  | id |  | 
						
							| 54 |  | 3anrot |  | 
						
							| 55 | 54 | biimpi |  | 
						
							| 56 |  | 3anrot |  | 
						
							| 57 |  | necom |  | 
						
							| 58 |  | necom |  | 
						
							| 59 |  | biid |  | 
						
							| 60 | 57 58 59 | 3anbi123i |  | 
						
							| 61 | 56 60 | sylbbr |  | 
						
							| 62 | 1 | pmtrprfv3 |  | 
						
							| 63 | 53 55 61 62 | syl3an |  | 
						
							| 64 | 52 63 | eqtrid |  | 
						
							| 65 | 64 | fveq2d |  | 
						
							| 66 | 51 65 29 | 3eqtrd |  | 
						
							| 67 | 7 40 66 | 3netr4d |  |