Metamath Proof Explorer


Theorem pmtr3ncomlem1

Description: Lemma 1 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)

Ref Expression
Hypotheses pmtr3ncom.t T=pmTrspD
pmtr3ncom.f F=TXY
pmtr3ncom.g G=TYZ
Assertion pmtr3ncomlem1 DVXDYDZDXYXZYZGFXFGX

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t T=pmTrspD
2 pmtr3ncom.f F=TXY
3 pmtr3ncom.g G=TYZ
4 necom YZZY
5 4 biimpi YZZY
6 5 3ad2ant3 XYXZYZZY
7 6 3ad2ant3 DVXDYDZDXYXZYZZY
8 simp1 DVXDYDZDXYXZYZDV
9 simp1 XDYDZDXD
10 9 3ad2ant2 DVXDYDZDXYXZYZXD
11 simp2 XDYDZDYD
12 11 3ad2ant2 DVXDYDZDXYXZYZYD
13 10 12 prssd DVXDYDZDXYXZYZXYD
14 simp1 XYXZYZXY
15 14 3ad2ant3 DVXDYDZDXYXZYZXY
16 pr2nelem XDYDXYXY2𝑜
17 10 12 15 16 syl3anc DVXDYDZDXYXZYZXY2𝑜
18 1 pmtrf DVXYDXY2𝑜TXY:DD
19 8 13 17 18 syl3anc DVXDYDZDXYXZYZTXY:DD
20 2 feq1i F:DDTXY:DD
21 19 20 sylibr DVXDYDZDXYXZYZF:DD
22 21 ffnd DVXDYDZDXYXZYZFFnD
23 fvco2 FFnDXDGFX=GFX
24 22 10 23 syl2anc DVXDYDZDXYXZYZGFX=GFX
25 2 fveq1i FX=TXYX
26 10 12 15 3jca DVXDYDZDXYXZYZXDYDXY
27 1 pmtrprfv DVXDYDXYTXYX=Y
28 8 26 27 syl2anc DVXDYDZDXYXZYZTXYX=Y
29 25 28 eqtrid DVXDYDZDXYXZYZFX=Y
30 29 fveq2d DVXDYDZDXYXZYZGFX=GY
31 3 fveq1i GY=TYZY
32 simp3 XDYDZDZD
33 32 3ad2ant2 DVXDYDZDXYXZYZZD
34 simp3 XYXZYZYZ
35 34 3ad2ant3 DVXDYDZDXYXZYZYZ
36 12 33 35 3jca DVXDYDZDXYXZYZYDZDYZ
37 1 pmtrprfv DVYDZDYZTYZY=Z
38 8 36 37 syl2anc DVXDYDZDXYXZYZTYZY=Z
39 31 38 eqtrid DVXDYDZDXYXZYZGY=Z
40 24 30 39 3eqtrd DVXDYDZDXYXZYZGFX=Z
41 11 32 prssd XDYDZDYZD
42 41 3ad2ant2 DVXDYDZDXYXZYZYZD
43 pr2nelem YDZDYZYZ2𝑜
44 12 33 35 43 syl3anc DVXDYDZDXYXZYZYZ2𝑜
45 1 pmtrf DVYZDYZ2𝑜TYZ:DD
46 3 feq1i G:DDTYZ:DD
47 45 46 sylibr DVYZDYZ2𝑜G:DD
48 8 42 44 47 syl3anc DVXDYDZDXYXZYZG:DD
49 48 ffnd DVXDYDZDXYXZYZGFnD
50 fvco2 GFnDXDFGX=FGX
51 49 10 50 syl2anc DVXDYDZDXYXZYZFGX=FGX
52 3 fveq1i GX=TYZX
53 id DVDV
54 3anrot XDYDZDYDZDXD
55 54 biimpi XDYDZDYDZDXD
56 3anrot YZYXZXYXZXYZ
57 necom YXXY
58 necom ZXXZ
59 biid YZYZ
60 57 58 59 3anbi123i YXZXYZXYXZYZ
61 56 60 sylbbr XYXZYZYZYXZX
62 1 pmtrprfv3 DVYDZDXDYZYXZXTYZX=X
63 53 55 61 62 syl3an DVXDYDZDXYXZYZTYZX=X
64 52 63 eqtrid DVXDYDZDXYXZYZGX=X
65 64 fveq2d DVXDYDZDXYXZYZFGX=FX
66 51 65 29 3eqtrd DVXDYDZDXYXZYZFGX=Y
67 7 40 66 3netr4d DVXDYDZDXYXZYZGFXFGX