Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtr3ncomlem2
Next ⟩
pmtr3ncom
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtr3ncomlem2
Description:
Lemma 2 for
pmtr3ncom
.
(Contributed by
AV
, 17-Mar-2018)
Ref
Expression
Hypotheses
pmtr3ncom.t
⊢
T
=
pmTrsp
⁡
D
pmtr3ncom.f
⊢
F
=
T
⁡
X
Y
pmtr3ncom.g
⊢
G
=
T
⁡
Y
Z
Assertion
pmtr3ncomlem2
⊢
D
∈
V
∧
X
∈
D
∧
Y
∈
D
∧
Z
∈
D
∧
X
≠
Y
∧
X
≠
Z
∧
Y
≠
Z
→
G
∘
F
≠
F
∘
G
Proof
Step
Hyp
Ref
Expression
1
pmtr3ncom.t
⊢
T
=
pmTrsp
⁡
D
2
pmtr3ncom.f
⊢
F
=
T
⁡
X
Y
3
pmtr3ncom.g
⊢
G
=
T
⁡
Y
Z
4
1
2
3
pmtr3ncomlem1
⊢
D
∈
V
∧
X
∈
D
∧
Y
∈
D
∧
Z
∈
D
∧
X
≠
Y
∧
X
≠
Z
∧
Y
≠
Z
→
G
∘
F
⁡
X
≠
F
∘
G
⁡
X
5
fveq1
⊢
G
∘
F
=
F
∘
G
→
G
∘
F
⁡
X
=
F
∘
G
⁡
X
6
5
necon3i
⊢
G
∘
F
⁡
X
≠
F
∘
G
⁡
X
→
G
∘
F
≠
F
∘
G
7
4
6
syl
⊢
D
∈
V
∧
X
∈
D
∧
Y
∈
D
∧
Z
∈
D
∧
X
≠
Y
∧
X
≠
Z
∧
Y
≠
Z
→
G
∘
F
≠
F
∘
G