Metamath Proof Explorer


Theorem pmtr3ncomlem2

Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)

Ref Expression
Hypotheses pmtr3ncom.t T = pmTrsp D
pmtr3ncom.f F = T X Y
pmtr3ncom.g G = T Y Z
Assertion pmtr3ncomlem2 D V X D Y D Z D X Y X Z Y Z G F F G

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t T = pmTrsp D
2 pmtr3ncom.f F = T X Y
3 pmtr3ncom.g G = T Y Z
4 1 2 3 pmtr3ncomlem1 D V X D Y D Z D X Y X Z Y Z G F X F G X
5 fveq1 G F = F G G F X = F G X
6 5 necon3i G F X F G X G F F G
7 4 6 syl D V X D Y D Z D X Y X Z Y Z G F F G