Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
|
2 |
|
pmtrcnel.t |
|
3 |
|
pmtrcnel.b |
|
4 |
|
pmtrcnel.j |
|
5 |
|
pmtrcnel.d |
|
6 |
|
pmtrcnel.f |
|
7 |
|
pmtrcnel.i |
|
8 |
|
mvdco |
|
9 |
|
difss |
|
10 |
|
dmss |
|
11 |
9 10
|
ax-mp |
|
12 |
11 7
|
sselid |
|
13 |
1 3
|
symgbasf1o |
|
14 |
|
f1of |
|
15 |
6 13 14
|
3syl |
|
16 |
15
|
fdmd |
|
17 |
12 16
|
eleqtrd |
|
18 |
15 17
|
ffvelrnd |
|
19 |
4 18
|
eqeltrid |
|
20 |
17 19
|
prssd |
|
21 |
15
|
ffnd |
|
22 |
|
fnelnfp |
|
23 |
22
|
biimpa |
|
24 |
21 17 7 23
|
syl21anc |
|
25 |
24
|
necomd |
|
26 |
4
|
a1i |
|
27 |
25 26
|
neeqtrrd |
|
28 |
|
pr2nelem |
|
29 |
17 19 27 28
|
syl3anc |
|
30 |
2
|
pmtrmvd |
|
31 |
5 20 29 30
|
syl3anc |
|
32 |
6 13
|
syl |
|
33 |
|
f1omvdmvd |
|
34 |
32 7 33
|
syl2anc |
|
35 |
4 34
|
eqeltrid |
|
36 |
35
|
eldifad |
|
37 |
7 36
|
prssd |
|
38 |
31 37
|
eqsstrd |
|
39 |
|
ssequn1 |
|
40 |
38 39
|
sylib |
|
41 |
8 40
|
sseqtrid |
|
42 |
41
|
sselda |
|
43 |
|
simpr |
|
44 |
|
eqid |
|
45 |
2 44
|
pmtrrn |
|
46 |
5 20 29 45
|
syl3anc |
|
47 |
2 44
|
pmtrff1o |
|
48 |
46 47
|
syl |
|
49 |
|
f1oco |
|
50 |
48 32 49
|
syl2anc |
|
51 |
|
f1ofn |
|
52 |
50 51
|
syl |
|
53 |
15 17
|
fvco3d |
|
54 |
26
|
eqcomd |
|
55 |
54
|
fveq2d |
|
56 |
2
|
pmtrprfv2 |
|
57 |
5 17 19 27 56
|
syl13anc |
|
58 |
53 55 57
|
3eqtrd |
|
59 |
|
nne |
|
60 |
58 59
|
sylibr |
|
61 |
|
fnelnfp |
|
62 |
61
|
notbid |
|
63 |
62
|
biimpar |
|
64 |
52 17 60 63
|
syl21anc |
|
65 |
64
|
adantr |
|
66 |
43 65
|
eqneltrd |
|
67 |
66
|
ex |
|
68 |
67
|
necon2ad |
|
69 |
68
|
imp |
|
70 |
|
eldifsn |
|
71 |
42 69 70
|
sylanbrc |
|
72 |
71
|
ex |
|
73 |
72
|
ssrdv |
|