| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrcnel.s |
|
| 2 |
|
pmtrcnel.t |
|
| 3 |
|
pmtrcnel.b |
|
| 4 |
|
pmtrcnel.j |
|
| 5 |
|
pmtrcnel.d |
|
| 6 |
|
pmtrcnel.f |
|
| 7 |
|
pmtrcnel.i |
|
| 8 |
|
mvdco |
|
| 9 |
8
|
a1i |
|
| 10 |
|
coass |
|
| 11 |
|
difss |
|
| 12 |
|
dmss |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
13 7
|
sselid |
|
| 15 |
1 3
|
symgbasf1o |
|
| 16 |
|
f1of |
|
| 17 |
6 15 16
|
3syl |
|
| 18 |
17
|
fdmd |
|
| 19 |
14 18
|
eleqtrd |
|
| 20 |
17 19
|
ffvelcdmd |
|
| 21 |
4 20
|
eqeltrid |
|
| 22 |
19 21
|
prssd |
|
| 23 |
17
|
ffnd |
|
| 24 |
|
fnelnfp |
|
| 25 |
24
|
biimpa |
|
| 26 |
23 19 7 25
|
syl21anc |
|
| 27 |
26
|
necomd |
|
| 28 |
4
|
a1i |
|
| 29 |
27 28
|
neeqtrrd |
|
| 30 |
|
enpr2 |
|
| 31 |
19 21 29 30
|
syl3anc |
|
| 32 |
|
eqid |
|
| 33 |
2 32
|
pmtrrn |
|
| 34 |
5 22 31 33
|
syl3anc |
|
| 35 |
2 32
|
pmtrff1o |
|
| 36 |
|
f1ococnv1 |
|
| 37 |
34 35 36
|
3syl |
|
| 38 |
37
|
coeq1d |
|
| 39 |
10 38
|
eqtr3id |
|
| 40 |
|
fcoi2 |
|
| 41 |
17 40
|
syl |
|
| 42 |
39 41
|
eqtrd |
|
| 43 |
42
|
difeq1d |
|
| 44 |
43
|
dmeqd |
|
| 45 |
2 32
|
pmtrfcnv |
|
| 46 |
34 45
|
syl |
|
| 47 |
46
|
difeq1d |
|
| 48 |
47
|
dmeqd |
|
| 49 |
2
|
pmtrmvd |
|
| 50 |
5 22 31 49
|
syl3anc |
|
| 51 |
48 50
|
eqtrd |
|
| 52 |
51
|
uneq1d |
|
| 53 |
|
uncom |
|
| 54 |
52 53
|
eqtrdi |
|
| 55 |
9 44 54
|
3sstr3d |
|
| 56 |
55
|
ssdifd |
|
| 57 |
|
difun2 |
|
| 58 |
|
difss |
|
| 59 |
57 58
|
eqsstri |
|
| 60 |
56 59
|
sstrdi |
|