Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
|
2 |
|
pmtrcnel.t |
|
3 |
|
pmtrcnel.b |
|
4 |
|
pmtrcnel.j |
|
5 |
|
pmtrcnel.d |
|
6 |
|
pmtrcnel.f |
|
7 |
|
pmtrcnel.i |
|
8 |
|
pmtrcnel.e |
|
9 |
|
pmtrcnel.a |
|
10 |
1 2 3 4 5 6 7
|
pmtrcnel |
|
11 |
8
|
difeq1i |
|
12 |
10 9 11
|
3sstr4g |
|
13 |
12
|
ssdifd |
|
14 |
|
difpr |
|
15 |
14
|
difeq2i |
|
16 |
1 3
|
symgbasf1o |
|
17 |
6 16
|
syl |
|
18 |
|
f1omvdmvd |
|
19 |
17 7 18
|
syl2anc |
|
20 |
4 19
|
eqeltrid |
|
21 |
20
|
eldifad |
|
22 |
21 8
|
eleqtrrdi |
|
23 |
4
|
a1i |
|
24 |
|
f1of |
|
25 |
17 24
|
syl |
|
26 |
25
|
ffnd |
|
27 |
|
difss |
|
28 |
|
dmss |
|
29 |
27 28
|
ax-mp |
|
30 |
29 7
|
sselid |
|
31 |
25
|
fdmd |
|
32 |
30 31
|
eleqtrd |
|
33 |
|
fnelnfp |
|
34 |
33
|
biimpa |
|
35 |
26 32 7 34
|
syl21anc |
|
36 |
23 35
|
eqnetrd |
|
37 |
|
eldifsn |
|
38 |
22 36 37
|
sylanbrc |
|
39 |
38
|
snssd |
|
40 |
|
dfss4 |
|
41 |
39 40
|
sylib |
|
42 |
15 41
|
syl5eq |
|
43 |
13 42
|
sseqtrd |
|
44 |
|
sssn |
|
45 |
43 44
|
sylib |
|
46 |
|
simpr |
|
47 |
1 2 3 4 5 6 7
|
pmtrcnel2 |
|
48 |
8
|
difeq1i |
|
49 |
47 48 9
|
3sstr4g |
|
50 |
|
ssdif0 |
|
51 |
49 50
|
sylib |
|
52 |
51
|
adantr |
|
53 |
|
eqdif |
|
54 |
46 52 53
|
syl2anc |
|
55 |
54
|
ex |
|
56 |
12
|
adantr |
|
57 |
14 49
|
eqsstrrid |
|
58 |
57
|
adantr |
|
59 |
|
ssundif |
|
60 |
58 59
|
sylibr |
|
61 |
|
ssidd |
|
62 |
|
simpr |
|
63 |
61 62
|
sseqtrrd |
|
64 |
63
|
difss2d |
|
65 |
|
ssequn1 |
|
66 |
64 65
|
sylib |
|
67 |
60 66
|
sseqtrd |
|
68 |
56 67
|
eqssd |
|
69 |
68
|
ex |
|
70 |
55 69
|
orim12d |
|
71 |
45 70
|
mpd |
|