Metamath Proof Explorer


Theorem pmtrdifel

Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
Assertion pmtrdifel t T r R x N K t x = r x

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 eqid pmTrsp N dom t I = pmTrsp N dom t I
4 1 2 3 pmtrdifellem1 t T pmTrsp N dom t I R
5 1 2 3 pmtrdifellem3 t T x N K t x = pmTrsp N dom t I x
6 fveq1 r = pmTrsp N dom t I r x = pmTrsp N dom t I x
7 6 eqeq2d r = pmTrsp N dom t I t x = r x t x = pmTrsp N dom t I x
8 7 ralbidv r = pmTrsp N dom t I x N K t x = r x x N K t x = pmTrsp N dom t I x
9 8 rspcev pmTrsp N dom t I R x N K t x = pmTrsp N dom t I x r R x N K t x = r x
10 4 5 9 syl2anc t T r R x N K t x = r x
11 10 rgen t T r R x N K t x = r x