Metamath Proof Explorer


Theorem pmtrdifellem1

Description: Lemma 1 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifel.0 S = pmTrsp N dom Q I
Assertion pmtrdifellem1 Q T S R

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifel.0 S = pmTrsp N dom Q I
4 eqid pmTrsp N K = pmTrsp N K
5 4 1 pmtrfb Q T N K V Q : N K 1-1 onto N K dom Q I 2 𝑜
6 difsnexi N K V N V
7 f1of Q : N K 1-1 onto N K Q : N K N K
8 fdm Q : N K N K dom Q = N K
9 difssd dom Q = N K Q I Q
10 dmss Q I Q dom Q I dom Q
11 9 10 syl dom Q = N K dom Q I dom Q
12 difssd dom Q = N K N K N
13 sseq1 dom Q = N K dom Q N N K N
14 12 13 mpbird dom Q = N K dom Q N
15 11 14 sstrd dom Q = N K dom Q I N
16 7 8 15 3syl Q : N K 1-1 onto N K dom Q I N
17 id dom Q I 2 𝑜 dom Q I 2 𝑜
18 eqid pmTrsp N = pmTrsp N
19 18 2 pmtrrn N V dom Q I N dom Q I 2 𝑜 pmTrsp N dom Q I R
20 3 19 eqeltrid N V dom Q I N dom Q I 2 𝑜 S R
21 6 16 17 20 syl3an N K V Q : N K 1-1 onto N K dom Q I 2 𝑜 S R
22 5 21 sylbi Q T S R