Metamath Proof Explorer


Theorem pmtrdifellem3

Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifel.0 S = pmTrsp N dom Q I
Assertion pmtrdifellem3 Q T x N K Q x = S x

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifel.0 S = pmTrsp N dom Q I
4 1 2 3 pmtrdifellem2 Q T dom S I = dom Q I
5 4 adantr Q T x N K dom S I = dom Q I
6 5 eleq2d Q T x N K x dom S I x dom Q I
7 4 difeq1d Q T dom S I x = dom Q I x
8 7 unieqd Q T dom S I x = dom Q I x
9 8 adantr Q T x N K dom S I x = dom Q I x
10 6 9 ifbieq1d Q T x N K if x dom S I dom S I x x = if x dom Q I dom Q I x x
11 1 2 3 pmtrdifellem1 Q T S R
12 eldifi x N K x N
13 eqid pmTrsp N = pmTrsp N
14 eqid dom S I = dom S I
15 13 2 14 pmtrffv S R x N S x = if x dom S I dom S I x x
16 11 12 15 syl2an Q T x N K S x = if x dom S I dom S I x x
17 eqid pmTrsp N K = pmTrsp N K
18 eqid dom Q I = dom Q I
19 17 1 18 pmtrffv Q T x N K Q x = if x dom Q I dom Q I x x
20 10 16 19 3eqtr4rd Q T x N K Q x = S x
21 20 ralrimiva Q T x N K Q x = S x