Metamath Proof Explorer


Theorem pmtrdifellem4

Description: Lemma 4 for pmtrdifel . (Contributed by AV, 28-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifel.0 S = pmTrsp N dom Q I
Assertion pmtrdifellem4 Q T K N S K = K

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifel.0 S = pmTrsp N dom Q I
4 1 2 3 pmtrdifellem1 Q T S R
5 eqid pmTrsp N = pmTrsp N
6 eqid dom S I = dom S I
7 5 2 6 pmtrffv S R K N S K = if K dom S I dom S I K K
8 4 7 sylan Q T K N S K = if K dom S I dom S I K K
9 eqid SymGrp N K = SymGrp N K
10 eqid Base SymGrp N K = Base SymGrp N K
11 1 9 10 symgtrf T Base SymGrp N K
12 11 sseli Q T Q Base SymGrp N K
13 9 10 symgbasf Q Base SymGrp N K Q : N K N K
14 ffn Q : N K N K Q Fn N K
15 fndifnfp Q Fn N K dom Q I = x N K | Q x x
16 ssrab2 x N K | Q x x N K
17 ssel2 x N K | Q x x N K K x N K | Q x x K N K
18 eldif K N K K N ¬ K K
19 elsng K N K K K = K
20 19 notbid K N ¬ K K ¬ K = K
21 eqid K = K
22 21 pm2.24i ¬ K = K ¬ K N
23 20 22 syl6bi K N ¬ K K ¬ K N
24 23 imp K N ¬ K K ¬ K N
25 18 24 sylbi K N K ¬ K N
26 17 25 syl x N K | Q x x N K K x N K | Q x x ¬ K N
27 16 26 mpan K x N K | Q x x ¬ K N
28 27 con2i K N ¬ K x N K | Q x x
29 eleq2 dom Q I = x N K | Q x x K dom Q I K x N K | Q x x
30 29 notbid dom Q I = x N K | Q x x ¬ K dom Q I ¬ K x N K | Q x x
31 28 30 syl5ibr dom Q I = x N K | Q x x K N ¬ K dom Q I
32 14 15 31 3syl Q : N K N K K N ¬ K dom Q I
33 12 13 32 3syl Q T K N ¬ K dom Q I
34 33 imp Q T K N ¬ K dom Q I
35 1 2 3 pmtrdifellem2 Q T dom S I = dom Q I
36 35 eleq2d Q T K dom S I K dom Q I
37 36 adantr Q T K N K dom S I K dom Q I
38 34 37 mtbird Q T K N ¬ K dom S I
39 38 iffalsed Q T K N if K dom S I dom S I K K = K
40 8 39 eqtrd Q T K N S K = K