Metamath Proof Explorer


Theorem pmtrdifwrdel

Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
Assertion pmtrdifwrdel w Word T u Word R w = u i 0 ..^ w x N K w i x = u i x

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 fveq2 j = n w j = w n
4 3 difeq1d j = n w j I = w n I
5 4 dmeqd j = n dom w j I = dom w n I
6 5 fveq2d j = n pmTrsp N dom w j I = pmTrsp N dom w n I
7 6 cbvmptv j 0 ..^ w pmTrsp N dom w j I = n 0 ..^ w pmTrsp N dom w n I
8 1 2 7 pmtrdifwrdellem1 w Word T j 0 ..^ w pmTrsp N dom w j I Word R
9 1 2 7 pmtrdifwrdellem2 w Word T w = j 0 ..^ w pmTrsp N dom w j I
10 1 2 7 pmtrdifwrdellem3 w Word T i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
11 fveq2 u = j 0 ..^ w pmTrsp N dom w j I u = j 0 ..^ w pmTrsp N dom w j I
12 11 eqeq2d u = j 0 ..^ w pmTrsp N dom w j I w = u w = j 0 ..^ w pmTrsp N dom w j I
13 fveq1 u = j 0 ..^ w pmTrsp N dom w j I u i = j 0 ..^ w pmTrsp N dom w j I i
14 13 fveq1d u = j 0 ..^ w pmTrsp N dom w j I u i x = j 0 ..^ w pmTrsp N dom w j I i x
15 14 eqeq2d u = j 0 ..^ w pmTrsp N dom w j I w i x = u i x w i x = j 0 ..^ w pmTrsp N dom w j I i x
16 15 2ralbidv u = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w x N K w i x = u i x i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
17 12 16 anbi12d u = j 0 ..^ w pmTrsp N dom w j I w = u i 0 ..^ w x N K w i x = u i x w = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
18 17 rspcev j 0 ..^ w pmTrsp N dom w j I Word R w = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x u Word R w = u i 0 ..^ w x N K w i x = u i x
19 8 9 10 18 syl12anc w Word T u Word R w = u i 0 ..^ w x N K w i x = u i x
20 19 rgen w Word T u Word R w = u i 0 ..^ w x N K w i x = u i x