Metamath Proof Explorer


Theorem pmtrdifwrdel2

Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
Assertion pmtrdifwrdel2 K N w Word T u Word R w = u i 0 ..^ w u i K = K x N K w i x = u i x

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 fveq2 j = n w j = w n
4 3 difeq1d j = n w j I = w n I
5 4 dmeqd j = n dom w j I = dom w n I
6 5 fveq2d j = n pmTrsp N dom w j I = pmTrsp N dom w n I
7 6 cbvmptv j 0 ..^ w pmTrsp N dom w j I = n 0 ..^ w pmTrsp N dom w n I
8 1 2 7 pmtrdifwrdellem1 w Word T j 0 ..^ w pmTrsp N dom w j I Word R
9 8 adantl K N w Word T j 0 ..^ w pmTrsp N dom w j I Word R
10 1 2 7 pmtrdifwrdellem2 w Word T w = j 0 ..^ w pmTrsp N dom w j I
11 10 adantl K N w Word T w = j 0 ..^ w pmTrsp N dom w j I
12 1 2 7 pmtrdifwrdel2lem1 w Word T K N i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K
13 12 ancoms K N w Word T i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K
14 1 2 7 pmtrdifwrdellem3 w Word T i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
15 14 adantl K N w Word T i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
16 r19.26 i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K i 0 ..^ w x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
17 13 15 16 sylanbrc K N w Word T i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
18 fveq2 u = j 0 ..^ w pmTrsp N dom w j I u = j 0 ..^ w pmTrsp N dom w j I
19 18 eqeq2d u = j 0 ..^ w pmTrsp N dom w j I w = u w = j 0 ..^ w pmTrsp N dom w j I
20 fveq1 u = j 0 ..^ w pmTrsp N dom w j I u i = j 0 ..^ w pmTrsp N dom w j I i
21 20 fveq1d u = j 0 ..^ w pmTrsp N dom w j I u i K = j 0 ..^ w pmTrsp N dom w j I i K
22 21 eqeq1d u = j 0 ..^ w pmTrsp N dom w j I u i K = K j 0 ..^ w pmTrsp N dom w j I i K = K
23 20 fveq1d u = j 0 ..^ w pmTrsp N dom w j I u i x = j 0 ..^ w pmTrsp N dom w j I i x
24 23 eqeq2d u = j 0 ..^ w pmTrsp N dom w j I w i x = u i x w i x = j 0 ..^ w pmTrsp N dom w j I i x
25 24 ralbidv u = j 0 ..^ w pmTrsp N dom w j I x N K w i x = u i x x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
26 22 25 anbi12d u = j 0 ..^ w pmTrsp N dom w j I u i K = K x N K w i x = u i x j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
27 26 ralbidv u = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w u i K = K x N K w i x = u i x i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
28 19 27 anbi12d u = j 0 ..^ w pmTrsp N dom w j I w = u i 0 ..^ w u i K = K x N K w i x = u i x w = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x
29 28 rspcev j 0 ..^ w pmTrsp N dom w j I Word R w = j 0 ..^ w pmTrsp N dom w j I i 0 ..^ w j 0 ..^ w pmTrsp N dom w j I i K = K x N K w i x = j 0 ..^ w pmTrsp N dom w j I i x u Word R w = u i 0 ..^ w u i K = K x N K w i x = u i x
30 9 11 17 29 syl12anc K N w Word T u Word R w = u i 0 ..^ w u i K = K x N K w i x = u i x
31 30 ralrimiva K N w Word T u Word R w = u i 0 ..^ w u i K = K x N K w i x = u i x