Metamath Proof Explorer


Theorem pmtrdifwrdel2lem1

Description: Lemma 1 for pmtrdifwrdel2 . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
Assertion pmtrdifwrdel2lem1 W Word T K N i 0 ..^ W U i K = K

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
4 simpr W Word T K N i 0 ..^ W i 0 ..^ W
5 fvex pmTrsp N dom W i I V
6 fveq2 x = i W x = W i
7 6 difeq1d x = i W x I = W i I
8 7 dmeqd x = i dom W x I = dom W i I
9 8 fveq2d x = i pmTrsp N dom W x I = pmTrsp N dom W i I
10 9 3 fvmptg i 0 ..^ W pmTrsp N dom W i I V U i = pmTrsp N dom W i I
11 4 5 10 sylancl W Word T K N i 0 ..^ W U i = pmTrsp N dom W i I
12 11 fveq1d W Word T K N i 0 ..^ W U i K = pmTrsp N dom W i I K
13 wrdsymbcl W Word T i 0 ..^ W W i T
14 13 adantlr W Word T K N i 0 ..^ W W i T
15 simplr W Word T K N i 0 ..^ W K N
16 eqid pmTrsp N dom W i I = pmTrsp N dom W i I
17 1 2 16 pmtrdifellem4 W i T K N pmTrsp N dom W i I K = K
18 14 15 17 syl2anc W Word T K N i 0 ..^ W pmTrsp N dom W i I K = K
19 12 18 eqtrd W Word T K N i 0 ..^ W U i K = K
20 19 ralrimiva W Word T K N i 0 ..^ W U i K = K