Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtrdifwrdellem1
Next ⟩
pmtrdifwrdellem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrdifwrdellem1
Description:
Lemma 1 for
pmtrdifwrdel
.
(Contributed by
AV
, 15-Jan-2019)
Ref
Expression
Hypotheses
pmtrdifel.t
⊢
T
=
ran
⁡
pmTrsp
⁡
N
∖
K
pmtrdifel.r
⊢
R
=
ran
⁡
pmTrsp
⁡
N
pmtrdifwrdel.0
⊢
U
=
x
∈
0
..^
W
⟼
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
Assertion
pmtrdifwrdellem1
⊢
W
∈
Word
T
→
U
∈
Word
R
Proof
Step
Hyp
Ref
Expression
1
pmtrdifel.t
⊢
T
=
ran
⁡
pmTrsp
⁡
N
∖
K
2
pmtrdifel.r
⊢
R
=
ran
⁡
pmTrsp
⁡
N
3
pmtrdifwrdel.0
⊢
U
=
x
∈
0
..^
W
⟼
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
4
wrdsymbcl
⊢
W
∈
Word
T
∧
x
∈
0
..^
W
→
W
⁡
x
∈
T
5
eqid
⊢
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
=
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
6
1
2
5
pmtrdifellem1
⊢
W
⁡
x
∈
T
→
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
7
4
6
syl
⊢
W
∈
Word
T
∧
x
∈
0
..^
W
→
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
8
7
3
fmptd
⊢
W
∈
Word
T
→
U
:
0
..^
W
⟶
R
9
iswrdi
⊢
U
:
0
..^
W
⟶
R
→
U
∈
Word
R
10
8
9
syl
⊢
W
∈
Word
T
→
U
∈
Word
R