Metamath Proof Explorer


Theorem pmtrdifwrdellem1

Description: Lemma 1 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
Assertion pmtrdifwrdellem1 W Word T U Word R

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
4 wrdsymbcl W Word T x 0 ..^ W W x T
5 eqid pmTrsp N dom W x I = pmTrsp N dom W x I
6 1 2 5 pmtrdifellem1 W x T pmTrsp N dom W x I R
7 4 6 syl W Word T x 0 ..^ W pmTrsp N dom W x I R
8 7 3 fmptd W Word T U : 0 ..^ W R
9 iswrdi U : 0 ..^ W R U Word R
10 8 9 syl W Word T U Word R