Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtrdifwrdellem2
Next ⟩
pmtrdifwrdellem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrdifwrdellem2
Description:
Lemma 2 for
pmtrdifwrdel
.
(Contributed by
AV
, 15-Jan-2019)
Ref
Expression
Hypotheses
pmtrdifel.t
⊢
T
=
ran
⁡
pmTrsp
⁡
N
∖
K
pmtrdifel.r
⊢
R
=
ran
⁡
pmTrsp
⁡
N
pmtrdifwrdel.0
⊢
U
=
x
∈
0
..^
W
⟼
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
Assertion
pmtrdifwrdellem2
⊢
W
∈
Word
T
→
W
=
U
Proof
Step
Hyp
Ref
Expression
1
pmtrdifel.t
⊢
T
=
ran
⁡
pmTrsp
⁡
N
∖
K
2
pmtrdifel.r
⊢
R
=
ran
⁡
pmTrsp
⁡
N
3
pmtrdifwrdel.0
⊢
U
=
x
∈
0
..^
W
⟼
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
4
wrdsymbcl
⊢
W
∈
Word
T
∧
x
∈
0
..^
W
→
W
⁡
x
∈
T
5
eqid
⊢
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
=
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
6
1
2
5
pmtrdifellem1
⊢
W
⁡
x
∈
T
→
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
7
4
6
syl
⊢
W
∈
Word
T
∧
x
∈
0
..^
W
→
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
8
7
ralrimiva
⊢
W
∈
Word
T
→
∀
x
∈
0
..^
W
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
9
3
fnmpt
⊢
∀
x
∈
0
..^
W
pmTrsp
⁡
N
⁡
dom
⁡
W
⁡
x
∖
I
∈
R
→
U
Fn
0
..^
W
10
hashfn
⊢
U
Fn
0
..^
W
→
U
=
0
..^
W
11
8
9
10
3syl
⊢
W
∈
Word
T
→
U
=
0
..^
W
12
lencl
⊢
W
∈
Word
T
→
W
∈
ℕ
0
13
hashfzo0
⊢
W
∈
ℕ
0
→
0
..^
W
=
W
14
12
13
syl
⊢
W
∈
Word
T
→
0
..^
W
=
W
15
11
14
eqtr2d
⊢
W
∈
Word
T
→
W
=
U