Metamath Proof Explorer


Theorem pmtrdifwrdellem2

Description: Lemma 2 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
Assertion pmtrdifwrdellem2 W Word T W = U

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
4 wrdsymbcl W Word T x 0 ..^ W W x T
5 eqid pmTrsp N dom W x I = pmTrsp N dom W x I
6 1 2 5 pmtrdifellem1 W x T pmTrsp N dom W x I R
7 4 6 syl W Word T x 0 ..^ W pmTrsp N dom W x I R
8 7 ralrimiva W Word T x 0 ..^ W pmTrsp N dom W x I R
9 3 fnmpt x 0 ..^ W pmTrsp N dom W x I R U Fn 0 ..^ W
10 hashfn U Fn 0 ..^ W U = 0 ..^ W
11 8 9 10 3syl W Word T U = 0 ..^ W
12 lencl W Word T W 0
13 hashfzo0 W 0 0 ..^ W = W
14 12 13 syl W Word T 0 ..^ W = W
15 11 14 eqtr2d W Word T W = U