Metamath Proof Explorer


Theorem pmtrdifwrdellem3

Description: Lemma 3 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T = ran pmTrsp N K
pmtrdifel.r R = ran pmTrsp N
pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
Assertion pmtrdifwrdellem3 W Word T i 0 ..^ W n N K W i n = U i n

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T = ran pmTrsp N K
2 pmtrdifel.r R = ran pmTrsp N
3 pmtrdifwrdel.0 U = x 0 ..^ W pmTrsp N dom W x I
4 wrdsymbcl W Word T i 0 ..^ W W i T
5 eqid pmTrsp N dom W i I = pmTrsp N dom W i I
6 1 2 5 pmtrdifellem3 W i T n N K W i n = pmTrsp N dom W i I n
7 4 6 syl W Word T i 0 ..^ W n N K W i n = pmTrsp N dom W i I n
8 fveq2 x = i W x = W i
9 8 difeq1d x = i W x I = W i I
10 9 dmeqd x = i dom W x I = dom W i I
11 10 fveq2d x = i pmTrsp N dom W x I = pmTrsp N dom W i I
12 simpr W Word T i 0 ..^ W i 0 ..^ W
13 fvexd W Word T i 0 ..^ W pmTrsp N dom W i I V
14 3 11 12 13 fvmptd3 W Word T i 0 ..^ W U i = pmTrsp N dom W i I
15 14 fveq1d W Word T i 0 ..^ W U i n = pmTrsp N dom W i I n
16 15 eqeq2d W Word T i 0 ..^ W W i n = U i n W i n = pmTrsp N dom W i I n
17 16 ralbidv W Word T i 0 ..^ W n N K W i n = U i n n N K W i n = pmTrsp N dom W i I n
18 7 17 mpbird W Word T i 0 ..^ W n N K W i n = U i n
19 18 ralrimiva W Word T i 0 ..^ W n N K W i n = U i n