Metamath Proof Explorer


Theorem pmtrf

Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T = pmTrsp D
Assertion pmtrf D V P D P 2 𝑜 T P : D D

Proof

Step Hyp Ref Expression
1 pmtrfval.t T = pmTrsp D
2 1 pmtrval D V P D P 2 𝑜 T P = z D if z P P z z
3 simpll2 D V P D P 2 𝑜 z D z P P D
4 1onn 1 𝑜 ω
5 simpll3 D V P D P 2 𝑜 z D z P P 2 𝑜
6 df-2o 2 𝑜 = suc 1 𝑜
7 5 6 breqtrdi D V P D P 2 𝑜 z D z P P suc 1 𝑜
8 simpr D V P D P 2 𝑜 z D z P z P
9 dif1en 1 𝑜 ω P suc 1 𝑜 z P P z 1 𝑜
10 4 7 8 9 mp3an2i D V P D P 2 𝑜 z D z P P z 1 𝑜
11 en1uniel P z 1 𝑜 P z P z
12 eldifi P z P z P z P
13 10 11 12 3syl D V P D P 2 𝑜 z D z P P z P
14 3 13 sseldd D V P D P 2 𝑜 z D z P P z D
15 simplr D V P D P 2 𝑜 z D ¬ z P z D
16 14 15 ifclda D V P D P 2 𝑜 z D if z P P z z D
17 2 16 fmpt3d D V P D P 2 𝑜 T P : D D