Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtrf
Next ⟩
pmtrmvd
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrf
Description:
Functionality of a transposition.
(Contributed by
Stefan O'Rear
, 16-Aug-2015)
Ref
Expression
Hypothesis
pmtrfval.t
⊢
T
=
pmTrsp
⁡
D
Assertion
pmtrf
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
→
T
⁡
P
:
D
⟶
D
Proof
Step
Hyp
Ref
Expression
1
pmtrfval.t
⊢
T
=
pmTrsp
⁡
D
2
1
pmtrval
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
→
T
⁡
P
=
z
∈
D
⟼
if
z
∈
P
⋃
P
∖
z
z
3
simpll2
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
P
⊆
D
4
1onn
⊢
1
𝑜
∈
ω
5
simpll3
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
P
≈
2
𝑜
6
df-2o
⊢
2
𝑜
=
suc
⁡
1
𝑜
7
5
6
breqtrdi
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
P
≈
suc
⁡
1
𝑜
8
simpr
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
z
∈
P
9
dif1en
⊢
1
𝑜
∈
ω
∧
P
≈
suc
⁡
1
𝑜
∧
z
∈
P
→
P
∖
z
≈
1
𝑜
10
4
7
8
9
mp3an2i
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
P
∖
z
≈
1
𝑜
11
en1uniel
⊢
P
∖
z
≈
1
𝑜
→
⋃
P
∖
z
∈
P
∖
z
12
eldifi
⊢
⋃
P
∖
z
∈
P
∖
z
→
⋃
P
∖
z
∈
P
13
10
11
12
3syl
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
⋃
P
∖
z
∈
P
14
3
13
sseldd
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
z
∈
P
→
⋃
P
∖
z
∈
D
15
simplr
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
∧
¬
z
∈
P
→
z
∈
D
16
14
15
ifclda
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
∧
z
∈
D
→
if
z
∈
P
⋃
P
∖
z
z
∈
D
17
2
16
fmpt3d
⊢
D
∈
V
∧
P
⊆
D
∧
P
≈
2
𝑜
→
T
⁡
P
:
D
⟶
D