Metamath Proof Explorer


Theorem pmtrfb

Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
Assertion pmtrfb F R D V F : D 1-1 onto D dom F I 2 𝑜

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 eqid dom F I = dom F I
4 1 2 3 pmtrfrn F R D V dom F I D dom F I 2 𝑜 F = T dom F I
5 simpl1 D V dom F I D dom F I 2 𝑜 F = T dom F I D V
6 4 5 syl F R D V
7 1 2 pmtrff1o F R F : D 1-1 onto D
8 simpl3 D V dom F I D dom F I 2 𝑜 F = T dom F I dom F I 2 𝑜
9 4 8 syl F R dom F I 2 𝑜
10 6 7 9 3jca F R D V F : D 1-1 onto D dom F I 2 𝑜
11 simp2 D V F : D 1-1 onto D dom F I 2 𝑜 F : D 1-1 onto D
12 difss F I F
13 dmss F I F dom F I dom F
14 12 13 ax-mp dom F I dom F
15 f1odm F : D 1-1 onto D dom F = D
16 14 15 sseqtrid F : D 1-1 onto D dom F I D
17 1 2 pmtrrn D V dom F I D dom F I 2 𝑜 T dom F I R
18 16 17 syl3an2 D V F : D 1-1 onto D dom F I 2 𝑜 T dom F I R
19 1 2 pmtrff1o T dom F I R T dom F I : D 1-1 onto D
20 18 19 syl D V F : D 1-1 onto D dom F I 2 𝑜 T dom F I : D 1-1 onto D
21 simp3 D V F : D 1-1 onto D dom F I 2 𝑜 dom F I 2 𝑜
22 1 pmtrmvd D V dom F I D dom F I 2 𝑜 dom T dom F I I = dom F I
23 16 22 syl3an2 D V F : D 1-1 onto D dom F I 2 𝑜 dom T dom F I I = dom F I
24 f1otrspeq F : D 1-1 onto D T dom F I : D 1-1 onto D dom F I 2 𝑜 dom T dom F I I = dom F I F = T dom F I
25 11 20 21 23 24 syl22anc D V F : D 1-1 onto D dom F I 2 𝑜 F = T dom F I
26 25 18 eqeltrd D V F : D 1-1 onto D dom F I 2 𝑜 F R
27 10 26 impbii F R D V F : D 1-1 onto D dom F I 2 𝑜