Metamath Proof Explorer


Theorem pmtrfconj

Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
Assertion pmtrfconj F R G : D 1-1 onto D G F G -1 R

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 1 2 pmtrfb F R D V F : D 1-1 onto D dom F I 2 𝑜
4 3 simp1bi F R D V
5 4 adantr F R G : D 1-1 onto D D V
6 simpr F R G : D 1-1 onto D G : D 1-1 onto D
7 1 2 pmtrff1o F R F : D 1-1 onto D
8 7 adantr F R G : D 1-1 onto D F : D 1-1 onto D
9 f1oco G : D 1-1 onto D F : D 1-1 onto D G F : D 1-1 onto D
10 6 8 9 syl2anc F R G : D 1-1 onto D G F : D 1-1 onto D
11 f1ocnv G : D 1-1 onto D G -1 : D 1-1 onto D
12 11 adantl F R G : D 1-1 onto D G -1 : D 1-1 onto D
13 f1oco G F : D 1-1 onto D G -1 : D 1-1 onto D G F G -1 : D 1-1 onto D
14 10 12 13 syl2anc F R G : D 1-1 onto D G F G -1 : D 1-1 onto D
15 f1of F : D 1-1 onto D F : D D
16 7 15 syl F R F : D D
17 16 adantr F R G : D 1-1 onto D F : D D
18 f1omvdconj F : D D G : D 1-1 onto D dom G F G -1 I = G dom F I
19 17 6 18 syl2anc F R G : D 1-1 onto D dom G F G -1 I = G dom F I
20 f1of1 G : D 1-1 onto D G : D 1-1 D
21 20 adantl F R G : D 1-1 onto D G : D 1-1 D
22 difss F I F
23 dmss F I F dom F I dom F
24 22 23 ax-mp dom F I dom F
25 24 17 fssdm F R G : D 1-1 onto D dom F I D
26 5 25 ssexd F R G : D 1-1 onto D dom F I V
27 f1imaeng G : D 1-1 D dom F I D dom F I V G dom F I dom F I
28 21 25 26 27 syl3anc F R G : D 1-1 onto D G dom F I dom F I
29 19 28 eqbrtrd F R G : D 1-1 onto D dom G F G -1 I dom F I
30 3 simp3bi F R dom F I 2 𝑜
31 30 adantr F R G : D 1-1 onto D dom F I 2 𝑜
32 entr dom G F G -1 I dom F I dom F I 2 𝑜 dom G F G -1 I 2 𝑜
33 29 31 32 syl2anc F R G : D 1-1 onto D dom G F G -1 I 2 𝑜
34 1 2 pmtrfb G F G -1 R D V G F G -1 : D 1-1 onto D dom G F G -1 I 2 𝑜
35 5 14 33 34 syl3anbrc F R G : D 1-1 onto D G F G -1 R