Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
|
2 |
|
pmtrrn.r |
|
3 |
1 2
|
pmtrfb |
|
4 |
3
|
simp1bi |
|
5 |
4
|
adantr |
|
6 |
|
simpr |
|
7 |
1 2
|
pmtrff1o |
|
8 |
7
|
adantr |
|
9 |
|
f1oco |
|
10 |
6 8 9
|
syl2anc |
|
11 |
|
f1ocnv |
|
12 |
11
|
adantl |
|
13 |
|
f1oco |
|
14 |
10 12 13
|
syl2anc |
|
15 |
|
f1of |
|
16 |
7 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
f1omvdconj |
|
19 |
17 6 18
|
syl2anc |
|
20 |
|
f1of1 |
|
21 |
20
|
adantl |
|
22 |
|
difss |
|
23 |
|
dmss |
|
24 |
22 23
|
ax-mp |
|
25 |
24 17
|
fssdm |
|
26 |
5 25
|
ssexd |
|
27 |
|
f1imaeng |
|
28 |
21 25 26 27
|
syl3anc |
|
29 |
19 28
|
eqbrtrd |
|
30 |
3
|
simp3bi |
|
31 |
30
|
adantr |
|
32 |
|
entr |
|
33 |
29 31 32
|
syl2anc |
|
34 |
1 2
|
pmtrfb |
|
35 |
5 14 33 34
|
syl3anbrc |
|