Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtrff1o
Next ⟩
pmtrfcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrff1o
Description:
A transposition function is a permutation.
(Contributed by
Stefan O'Rear
, 22-Aug-2015)
Ref
Expression
Hypotheses
pmtrrn.t
⊢
T
=
pmTrsp
⁡
D
pmtrrn.r
⊢
R
=
ran
⁡
T
Assertion
pmtrff1o
⊢
F
∈
R
→
F
:
D
⟶
1-1 onto
D
Proof
Step
Hyp
Ref
Expression
1
pmtrrn.t
⊢
T
=
pmTrsp
⁡
D
2
pmtrrn.r
⊢
R
=
ran
⁡
T
3
eqid
⊢
dom
⁡
F
∖
I
=
dom
⁡
F
∖
I
4
1
2
3
pmtrfrn
⊢
F
∈
R
→
D
∈
V
∧
dom
⁡
F
∖
I
⊆
D
∧
dom
⁡
F
∖
I
≈
2
𝑜
∧
F
=
T
⁡
dom
⁡
F
∖
I
5
4
simpld
⊢
F
∈
R
→
D
∈
V
∧
dom
⁡
F
∖
I
⊆
D
∧
dom
⁡
F
∖
I
≈
2
𝑜
6
1
pmtrf
⊢
D
∈
V
∧
dom
⁡
F
∖
I
⊆
D
∧
dom
⁡
F
∖
I
≈
2
𝑜
→
T
⁡
dom
⁡
F
∖
I
:
D
⟶
D
7
5
6
syl
⊢
F
∈
R
→
T
⁡
dom
⁡
F
∖
I
:
D
⟶
D
8
4
simprd
⊢
F
∈
R
→
F
=
T
⁡
dom
⁡
F
∖
I
9
8
feq1d
⊢
F
∈
R
→
F
:
D
⟶
D
↔
T
⁡
dom
⁡
F
∖
I
:
D
⟶
D
10
7
9
mpbird
⊢
F
∈
R
→
F
:
D
⟶
D
11
1
2
pmtrfinv
⊢
F
∈
R
→
F
∘
F
=
I
↾
D
12
10
10
11
11
fcof1od
⊢
F
∈
R
→
F
:
D
⟶
1-1 onto
D