Metamath Proof Explorer


Theorem pmtrffv

Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
pmtrfrn.p P = dom F I
Assertion pmtrffv F R Z D F Z = if Z P P Z Z

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 pmtrfrn.p P = dom F I
4 1 2 3 pmtrfrn F R D V P D P 2 𝑜 F = T P
5 4 simprd F R F = T P
6 5 fveq1d F R F Z = T P Z
7 6 adantr F R Z D F Z = T P Z
8 4 simpld F R D V P D P 2 𝑜
9 1 pmtrfv D V P D P 2 𝑜 Z D T P Z = if Z P P Z Z
10 8 9 sylan F R Z D T P Z = if Z P P Z Z
11 7 10 eqtrd F R Z D F Z = if Z P P Z Z