Metamath Proof Explorer


Theorem pmtrfinv

Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
Assertion pmtrfinv F R F F = I D

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 eqid dom F I = dom F I
4 1 2 3 pmtrfrn F R D V dom F I D dom F I 2 𝑜 F = T dom F I
5 4 simpld F R D V dom F I D dom F I 2 𝑜
6 1 pmtrf D V dom F I D dom F I 2 𝑜 T dom F I : D D
7 5 6 syl F R T dom F I : D D
8 4 simprd F R F = T dom F I
9 8 feq1d F R F : D D T dom F I : D D
10 7 9 mpbird F R F : D D
11 fco F : D D F : D D F F : D D
12 11 anidms F : D D F F : D D
13 ffn F F : D D F F Fn D
14 10 12 13 3syl F R F F Fn D
15 fnresi I D Fn D
16 15 a1i F R I D Fn D
17 1 2 3 pmtrffv F R x D F x = if x dom F I dom F I x x
18 iftrue x dom F I if x dom F I dom F I x x = dom F I x
19 17 18 sylan9eq F R x D x dom F I F x = dom F I x
20 19 fveq2d F R x D x dom F I F F x = F dom F I x
21 simpll F R x D x dom F I F R
22 5 simp2d F R dom F I D
23 22 ad2antrr F R x D x dom F I dom F I D
24 1onn 1 𝑜 ω
25 5 simp3d F R dom F I 2 𝑜
26 df-2o 2 𝑜 = suc 1 𝑜
27 25 26 breqtrdi F R dom F I suc 1 𝑜
28 27 ad2antrr F R x D x dom F I dom F I suc 1 𝑜
29 simpr F R x D x dom F I x dom F I
30 dif1en 1 𝑜 ω dom F I suc 1 𝑜 x dom F I dom F I x 1 𝑜
31 24 28 29 30 mp3an2i F R x D x dom F I dom F I x 1 𝑜
32 en1uniel dom F I x 1 𝑜 dom F I x dom F I x
33 31 32 syl F R x D x dom F I dom F I x dom F I x
34 33 eldifad F R x D x dom F I dom F I x dom F I
35 23 34 sseldd F R x D x dom F I dom F I x D
36 1 2 3 pmtrffv F R dom F I x D F dom F I x = if dom F I x dom F I dom F I dom F I x dom F I x
37 21 35 36 syl2anc F R x D x dom F I F dom F I x = if dom F I x dom F I dom F I dom F I x dom F I x
38 iftrue dom F I x dom F I if dom F I x dom F I dom F I dom F I x dom F I x = dom F I dom F I x
39 34 38 syl F R x D x dom F I if dom F I x dom F I dom F I dom F I x dom F I x = dom F I dom F I x
40 25 adantr F R x D dom F I 2 𝑜
41 en2other2 x dom F I dom F I 2 𝑜 dom F I dom F I x = x
42 41 ancoms dom F I 2 𝑜 x dom F I dom F I dom F I x = x
43 40 42 sylan F R x D x dom F I dom F I dom F I x = x
44 39 43 eqtrd F R x D x dom F I if dom F I x dom F I dom F I dom F I x dom F I x = x
45 37 44 eqtrd F R x D x dom F I F dom F I x = x
46 20 45 eqtrd F R x D x dom F I F F x = x
47 10 ffnd F R F Fn D
48 fnelnfp F Fn D x D x dom F I F x x
49 47 48 sylan F R x D x dom F I F x x
50 49 necon2bbid F R x D F x = x ¬ x dom F I
51 50 biimpar F R x D ¬ x dom F I F x = x
52 fveq2 F x = x F F x = F x
53 id F x = x F x = x
54 52 53 eqtrd F x = x F F x = x
55 51 54 syl F R x D ¬ x dom F I F F x = x
56 46 55 pm2.61dan F R x D F F x = x
57 fvco2 F Fn D x D F F x = F F x
58 47 57 sylan F R x D F F x = F F x
59 fvresi x D I D x = x
60 59 adantl F R x D I D x = x
61 56 58 60 3eqtr4d F R x D F F x = I D x
62 14 16 61 eqfnfvd F R F F = I D