Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
|
2 |
|
pmtrrn.r |
|
3 |
|
eqid |
|
4 |
1 2 3
|
pmtrfrn |
|
5 |
4
|
simpld |
|
6 |
1
|
pmtrf |
|
7 |
5 6
|
syl |
|
8 |
4
|
simprd |
|
9 |
8
|
feq1d |
|
10 |
7 9
|
mpbird |
|
11 |
|
fco |
|
12 |
11
|
anidms |
|
13 |
|
ffn |
|
14 |
10 12 13
|
3syl |
|
15 |
|
fnresi |
|
16 |
15
|
a1i |
|
17 |
1 2 3
|
pmtrffv |
|
18 |
|
iftrue |
|
19 |
17 18
|
sylan9eq |
|
20 |
19
|
fveq2d |
|
21 |
|
simpll |
|
22 |
5
|
simp2d |
|
23 |
22
|
ad2antrr |
|
24 |
|
1onn |
|
25 |
5
|
simp3d |
|
26 |
|
df-2o |
|
27 |
25 26
|
breqtrdi |
|
28 |
27
|
ad2antrr |
|
29 |
|
simpr |
|
30 |
|
dif1en |
|
31 |
24 28 29 30
|
mp3an2i |
|
32 |
|
en1uniel |
|
33 |
31 32
|
syl |
|
34 |
33
|
eldifad |
|
35 |
23 34
|
sseldd |
|
36 |
1 2 3
|
pmtrffv |
|
37 |
21 35 36
|
syl2anc |
|
38 |
|
iftrue |
|
39 |
34 38
|
syl |
|
40 |
25
|
adantr |
|
41 |
|
en2other2 |
|
42 |
41
|
ancoms |
|
43 |
40 42
|
sylan |
|
44 |
39 43
|
eqtrd |
|
45 |
37 44
|
eqtrd |
|
46 |
20 45
|
eqtrd |
|
47 |
10
|
ffnd |
|
48 |
|
fnelnfp |
|
49 |
47 48
|
sylan |
|
50 |
49
|
necon2bbid |
|
51 |
50
|
biimpar |
|
52 |
|
fveq2 |
|
53 |
|
id |
|
54 |
52 53
|
eqtrd |
|
55 |
51 54
|
syl |
|
56 |
46 55
|
pm2.61dan |
|
57 |
|
fvco2 |
|
58 |
47 57
|
sylan |
|
59 |
|
fvresi |
|
60 |
59
|
adantl |
|
61 |
56 58 60
|
3eqtr4d |
|
62 |
14 16 61
|
eqfnfvd |
|