| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrrn.t |
|
| 2 |
|
pmtrrn.r |
|
| 3 |
|
eqid |
|
| 4 |
1 2 3
|
pmtrfrn |
|
| 5 |
4
|
simpld |
|
| 6 |
1
|
pmtrf |
|
| 7 |
5 6
|
syl |
|
| 8 |
4
|
simprd |
|
| 9 |
8
|
feq1d |
|
| 10 |
7 9
|
mpbird |
|
| 11 |
|
fco |
|
| 12 |
11
|
anidms |
|
| 13 |
|
ffn |
|
| 14 |
10 12 13
|
3syl |
|
| 15 |
|
fnresi |
|
| 16 |
15
|
a1i |
|
| 17 |
1 2 3
|
pmtrffv |
|
| 18 |
|
iftrue |
|
| 19 |
17 18
|
sylan9eq |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
simpll |
|
| 22 |
5
|
simp2d |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
1onn |
|
| 25 |
5
|
simp3d |
|
| 26 |
|
df-2o |
|
| 27 |
25 26
|
breqtrdi |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
simpr |
|
| 30 |
|
dif1ennn |
|
| 31 |
24 28 29 30
|
mp3an2i |
|
| 32 |
|
en1uniel |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
eldifad |
|
| 35 |
23 34
|
sseldd |
|
| 36 |
1 2 3
|
pmtrffv |
|
| 37 |
21 35 36
|
syl2anc |
|
| 38 |
|
iftrue |
|
| 39 |
34 38
|
syl |
|
| 40 |
25
|
adantr |
|
| 41 |
|
en2other2 |
|
| 42 |
41
|
ancoms |
|
| 43 |
40 42
|
sylan |
|
| 44 |
39 43
|
eqtrd |
|
| 45 |
37 44
|
eqtrd |
|
| 46 |
20 45
|
eqtrd |
|
| 47 |
10
|
ffnd |
|
| 48 |
|
fnelnfp |
|
| 49 |
47 48
|
sylan |
|
| 50 |
49
|
necon2bbid |
|
| 51 |
50
|
biimpar |
|
| 52 |
|
fveq2 |
|
| 53 |
|
id |
|
| 54 |
52 53
|
eqtrd |
|
| 55 |
51 54
|
syl |
|
| 56 |
46 55
|
pm2.61dan |
|
| 57 |
|
fvco2 |
|
| 58 |
47 57
|
sylan |
|
| 59 |
|
fvresi |
|
| 60 |
59
|
adantl |
|
| 61 |
56 58 60
|
3eqtr4d |
|
| 62 |
14 16 61
|
eqfnfvd |
|