Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Transpositions in the symmetric group
pmtrfmvdn0
Next ⟩
pmtrff1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrfmvdn0
Description:
A transposition moves at least one point.
(Contributed by
Stefan O'Rear
, 23-Aug-2015)
Ref
Expression
Hypotheses
pmtrrn.t
⊢
T
=
pmTrsp
⁡
D
pmtrrn.r
⊢
R
=
ran
⁡
T
Assertion
pmtrfmvdn0
⊢
F
∈
R
→
dom
⁡
F
∖
I
≠
∅
Proof
Step
Hyp
Ref
Expression
1
pmtrrn.t
⊢
T
=
pmTrsp
⁡
D
2
pmtrrn.r
⊢
R
=
ran
⁡
T
3
2on0
⊢
2
𝑜
≠
∅
4
eqid
⊢
dom
⁡
F
∖
I
=
dom
⁡
F
∖
I
5
1
2
4
pmtrfrn
⊢
F
∈
R
→
D
∈
V
∧
dom
⁡
F
∖
I
⊆
D
∧
dom
⁡
F
∖
I
≈
2
𝑜
∧
F
=
T
⁡
dom
⁡
F
∖
I
6
5
simpld
⊢
F
∈
R
→
D
∈
V
∧
dom
⁡
F
∖
I
⊆
D
∧
dom
⁡
F
∖
I
≈
2
𝑜
7
6
simp3d
⊢
F
∈
R
→
dom
⁡
F
∖
I
≈
2
𝑜
8
enen1
⊢
dom
⁡
F
∖
I
≈
2
𝑜
→
dom
⁡
F
∖
I
≈
∅
↔
2
𝑜
≈
∅
9
7
8
syl
⊢
F
∈
R
→
dom
⁡
F
∖
I
≈
∅
↔
2
𝑜
≈
∅
10
en0
⊢
dom
⁡
F
∖
I
≈
∅
↔
dom
⁡
F
∖
I
=
∅
11
en0
⊢
2
𝑜
≈
∅
↔
2
𝑜
=
∅
12
9
10
11
3bitr3g
⊢
F
∈
R
→
dom
⁡
F
∖
I
=
∅
↔
2
𝑜
=
∅
13
12
necon3bid
⊢
F
∈
R
→
dom
⁡
F
∖
I
≠
∅
↔
2
𝑜
≠
∅
14
3
13
mpbiri
⊢
F
∈
R
→
dom
⁡
F
∖
I
≠
∅