Metamath Proof Explorer


Theorem pmtrfmvdn0

Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
Assertion pmtrfmvdn0 F R dom F I

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 2on0 2 𝑜
4 eqid dom F I = dom F I
5 1 2 4 pmtrfrn F R D V dom F I D dom F I 2 𝑜 F = T dom F I
6 5 simpld F R D V dom F I D dom F I 2 𝑜
7 6 simp3d F R dom F I 2 𝑜
8 enen1 dom F I 2 𝑜 dom F I 2 𝑜
9 7 8 syl F R dom F I 2 𝑜
10 en0 dom F I dom F I =
11 en0 2 𝑜 2 𝑜 =
12 9 10 11 3bitr3g F R dom F I = 2 𝑜 =
13 12 necon3bid F R dom F I 2 𝑜
14 3 13 mpbiri F R dom F I