| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrrn.t |
|
| 2 |
|
pmtrrn.r |
|
| 3 |
|
pmtrfrn.p |
|
| 4 |
|
noel |
|
| 5 |
1
|
rnfvprc |
|
| 6 |
2 5
|
eqtrid |
|
| 7 |
6
|
eleq2d |
|
| 8 |
4 7
|
mtbiri |
|
| 9 |
8
|
con4i |
|
| 10 |
|
mptexg |
|
| 11 |
10
|
ralrimivw |
|
| 12 |
|
eqid |
|
| 13 |
12
|
fnmpt |
|
| 14 |
11 13
|
syl |
|
| 15 |
1
|
pmtrfval |
|
| 16 |
15
|
fneq1d |
|
| 17 |
14 16
|
mpbird |
|
| 18 |
|
fvelrnb |
|
| 19 |
17 18
|
syl |
|
| 20 |
2
|
eleq2i |
|
| 21 |
|
breq1 |
|
| 22 |
21
|
rexrab |
|
| 23 |
22
|
bicomi |
|
| 24 |
19 20 23
|
3bitr4g |
|
| 25 |
|
elpwi |
|
| 26 |
|
simp1 |
|
| 27 |
1
|
pmtrmvd |
|
| 28 |
|
simp2 |
|
| 29 |
27 28
|
eqsstrd |
|
| 30 |
|
simp3 |
|
| 31 |
27 30
|
eqbrtrd |
|
| 32 |
26 29 31
|
3jca |
|
| 33 |
27
|
eqcomd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
32 34
|
jca |
|
| 36 |
|
difeq1 |
|
| 37 |
36
|
dmeqd |
|
| 38 |
37 3
|
eqtr4di |
|
| 39 |
|
sseq1 |
|
| 40 |
|
breq1 |
|
| 41 |
39 40
|
3anbi23d |
|
| 42 |
41
|
adantl |
|
| 43 |
|
simpl |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
adantl |
|
| 46 |
43 45
|
eqeq12d |
|
| 47 |
42 46
|
anbi12d |
|
| 48 |
38 47
|
mpdan |
|
| 49 |
35 48
|
syl5ibcom |
|
| 50 |
49
|
3exp |
|
| 51 |
50
|
imp4a |
|
| 52 |
25 51
|
syl5 |
|
| 53 |
52
|
rexlimdv |
|
| 54 |
24 53
|
sylbid |
|
| 55 |
9 54
|
mpcom |
|