Metamath Proof Explorer


Theorem pmtrfv

Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T = pmTrsp D
Assertion pmtrfv D V P D P 2 𝑜 Z D T P Z = if Z P P Z Z

Proof

Step Hyp Ref Expression
1 pmtrfval.t T = pmTrsp D
2 1 pmtrval D V P D P 2 𝑜 T P = z D if z P P z z
3 2 fveq1d D V P D P 2 𝑜 T P Z = z D if z P P z z Z
4 3 adantr D V P D P 2 𝑜 Z D T P Z = z D if z P P z z Z
5 eqid z D if z P P z z = z D if z P P z z
6 eleq1 z = Z z P Z P
7 sneq z = Z z = Z
8 7 difeq2d z = Z P z = P Z
9 8 unieqd z = Z P z = P Z
10 id z = Z z = Z
11 6 9 10 ifbieq12d z = Z if z P P z z = if Z P P Z Z
12 simpr D V P D P 2 𝑜 Z D Z D
13 simpl3 D V P D P 2 𝑜 Z D P 2 𝑜
14 relen Rel
15 14 brrelex1i P 2 𝑜 P V
16 difexg P V P Z V
17 uniexg P Z V P Z V
18 13 15 16 17 4syl D V P D P 2 𝑜 Z D P Z V
19 ifexg P Z V Z D if Z P P Z Z V
20 18 19 sylancom D V P D P 2 𝑜 Z D if Z P P Z Z V
21 5 11 12 20 fvmptd3 D V P D P 2 𝑜 Z D z D if z P P z z Z = if Z P P Z Z
22 4 21 eqtrd D V P D P 2 𝑜 Z D T P Z = if Z P P Z Z