Metamath Proof Explorer


Theorem pmtrfval

Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrfval DVT=py𝒫D|y2𝑜zDifzppzz

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 elex DVDV
3 pweq d=D𝒫d=𝒫D
4 3 rabeqdv d=Dy𝒫d|y2𝑜=y𝒫D|y2𝑜
5 mpteq1 d=Dzdifzppzz=zDifzppzz
6 4 5 mpteq12dv d=Dpy𝒫d|y2𝑜zdifzppzz=py𝒫D|y2𝑜zDifzppzz
7 df-pmtr pmTrsp=dVpy𝒫d|y2𝑜zdifzppzz
8 vpwex 𝒫dV
9 8 mptrabex py𝒫d|y2𝑜zdifzppzzV
10 6 7 9 fvmpt3i DVpmTrspD=py𝒫D|y2𝑜zDifzppzz
11 2 10 syl DVpmTrspD=py𝒫D|y2𝑜zDifzppzz
12 1 11 eqtrid DVT=py𝒫D|y2𝑜zDifzppzz