Metamath Proof Explorer


Theorem pmtrmvd

Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T = pmTrsp D
Assertion pmtrmvd D V P D P 2 𝑜 dom T P I = P

Proof

Step Hyp Ref Expression
1 pmtrfval.t T = pmTrsp D
2 1 pmtrf D V P D P 2 𝑜 T P : D D
3 ffn T P : D D T P Fn D
4 fndifnfp T P Fn D dom T P I = z D | T P z z
5 2 3 4 3syl D V P D P 2 𝑜 dom T P I = z D | T P z z
6 1 pmtrfv D V P D P 2 𝑜 z D T P z = if z P P z z
7 6 neeq1d D V P D P 2 𝑜 z D T P z z if z P P z z z
8 iffalse ¬ z P if z P P z z = z
9 8 necon1ai if z P P z z z z P
10 iftrue z P if z P P z z = P z
11 10 adantl D V P D P 2 𝑜 z P if z P P z z = P z
12 1onn 1 𝑜 ω
13 simpl3 D V P D P 2 𝑜 z P P 2 𝑜
14 df-2o 2 𝑜 = suc 1 𝑜
15 13 14 breqtrdi D V P D P 2 𝑜 z P P suc 1 𝑜
16 simpr D V P D P 2 𝑜 z P z P
17 dif1en 1 𝑜 ω P suc 1 𝑜 z P P z 1 𝑜
18 12 15 16 17 mp3an2i D V P D P 2 𝑜 z P P z 1 𝑜
19 en1uniel P z 1 𝑜 P z P z
20 eldifsni P z P z P z z
21 18 19 20 3syl D V P D P 2 𝑜 z P P z z
22 11 21 eqnetrd D V P D P 2 𝑜 z P if z P P z z z
23 22 ex D V P D P 2 𝑜 z P if z P P z z z
24 9 23 impbid2 D V P D P 2 𝑜 if z P P z z z z P
25 24 adantr D V P D P 2 𝑜 z D if z P P z z z z P
26 7 25 bitrd D V P D P 2 𝑜 z D T P z z z P
27 26 rabbidva D V P D P 2 𝑜 z D | T P z z = z D | z P
28 incom P D = D P
29 dfin5 D P = z D | z P
30 28 29 eqtri P D = z D | z P
31 27 30 eqtr4di D V P D P 2 𝑜 z D | T P z z = P D
32 simp2 D V P D P 2 𝑜 P D
33 df-ss P D P D = P
34 32 33 sylib D V P D P 2 𝑜 P D = P
35 5 31 34 3eqtrd D V P D P 2 𝑜 dom T P I = P