Metamath Proof Explorer


Theorem pmtrodpm

Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmodpmf1o.s S = SymGrp D
evpmodpmf1o.p P = Base S
pmtrodpm.t T = ran pmTrsp D
Assertion pmtrodpm D Fin F T F P pmEven D

Proof

Step Hyp Ref Expression
1 evpmodpmf1o.s S = SymGrp D
2 evpmodpmf1o.p P = Base S
3 pmtrodpm.t T = ran pmTrsp D
4 simpl D Fin F T D Fin
5 3 1 2 symgtrf T P
6 5 sseli F T F P
7 6 adantl D Fin F T F P
8 eqid pmSgn D = pmSgn D
9 1 3 8 psgnpmtr F T pmSgn D F = 1
10 9 adantl D Fin F T pmSgn D F = 1
11 1 2 8 psgnodpmr D Fin F P pmSgn D F = 1 F P pmEven D
12 4 7 10 11 syl3anc D Fin F T F P pmEven D