Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Embedding of permutation signs into a ring
pmtrodpm
Next ⟩
psgnfix1
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmtrodpm
Description:
A transposition is an odd permutation.
(Contributed by
SO
, 9-Jul-2018)
Ref
Expression
Hypotheses
evpmodpmf1o.s
⊢
S
=
SymGrp
⁡
D
evpmodpmf1o.p
⊢
P
=
Base
S
pmtrodpm.t
⊢
T
=
ran
⁡
pmTrsp
⁡
D
Assertion
pmtrodpm
⊢
D
∈
Fin
∧
F
∈
T
→
F
∈
P
∖
pmEven
⁡
D
Proof
Step
Hyp
Ref
Expression
1
evpmodpmf1o.s
⊢
S
=
SymGrp
⁡
D
2
evpmodpmf1o.p
⊢
P
=
Base
S
3
pmtrodpm.t
⊢
T
=
ran
⁡
pmTrsp
⁡
D
4
simpl
⊢
D
∈
Fin
∧
F
∈
T
→
D
∈
Fin
5
3
1
2
symgtrf
⊢
T
⊆
P
6
5
sseli
⊢
F
∈
T
→
F
∈
P
7
6
adantl
⊢
D
∈
Fin
∧
F
∈
T
→
F
∈
P
8
eqid
⊢
pmSgn
⁡
D
=
pmSgn
⁡
D
9
1
3
8
psgnpmtr
⊢
F
∈
T
→
pmSgn
⁡
D
⁡
F
=
−
1
10
9
adantl
⊢
D
∈
Fin
∧
F
∈
T
→
pmSgn
⁡
D
⁡
F
=
−
1
11
1
2
8
psgnodpmr
⊢
D
∈
Fin
∧
F
∈
P
∧
pmSgn
⁡
D
⁡
F
=
−
1
→
F
∈
P
∖
pmEven
⁡
D
12
4
7
10
11
syl3anc
⊢
D
∈
Fin
∧
F
∈
T
→
F
∈
P
∖
pmEven
⁡
D