Metamath Proof Explorer


Theorem pmtrprfval

Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pmtrprfval pmTrsp 1 2 = p 1 2 z 1 2 if z = 1 2 1

Proof

Step Hyp Ref Expression
1 prex 1 2 V
2 eqid pmTrsp 1 2 = pmTrsp 1 2
3 2 pmtrfval 1 2 V pmTrsp 1 2 = p t 𝒫 1 2 | t 2 𝑜 z 1 2 if z p p z z
4 1 3 ax-mp pmTrsp 1 2 = p t 𝒫 1 2 | t 2 𝑜 z 1 2 if z p p z z
5 1ex 1 V
6 2nn0 2 0
7 1ne2 1 2
8 pr2pwpr 1 V 2 0 1 2 t 𝒫 1 2 | t 2 𝑜 = 1 2
9 5 6 7 8 mp3an t 𝒫 1 2 | t 2 𝑜 = 1 2
10 9 mpteq1i p t 𝒫 1 2 | t 2 𝑜 z 1 2 if z p p z z = p 1 2 z 1 2 if z p p z z
11 elsni p 1 2 p = 1 2
12 eleq2 p = 1 2 z p z 1 2
13 12 biimpar p = 1 2 z 1 2 z p
14 13 iftrued p = 1 2 z 1 2 if z p p z z = p z
15 elpri z 1 2 z = 1 z = 2
16 2ex 2 V
17 16 unisn 2 = 2
18 simpr z = 1 p = 1 2 p = 1 2
19 sneq z = 1 z = 1
20 19 adantr z = 1 p = 1 2 z = 1
21 18 20 difeq12d z = 1 p = 1 2 p z = 1 2 1
22 difprsn1 1 2 1 2 1 = 2
23 7 22 ax-mp 1 2 1 = 2
24 21 23 eqtrdi z = 1 p = 1 2 p z = 2
25 24 unieqd z = 1 p = 1 2 p z = 2
26 iftrue z = 1 if z = 1 2 1 = 2
27 26 adantr z = 1 p = 1 2 if z = 1 2 1 = 2
28 17 25 27 3eqtr4a z = 1 p = 1 2 p z = if z = 1 2 1
29 28 ex z = 1 p = 1 2 p z = if z = 1 2 1
30 5 unisn 1 = 1
31 simpr z = 2 p = 1 2 p = 1 2
32 sneq z = 2 z = 2
33 32 adantr z = 2 p = 1 2 z = 2
34 31 33 difeq12d z = 2 p = 1 2 p z = 1 2 2
35 difprsn2 1 2 1 2 2 = 1
36 7 35 ax-mp 1 2 2 = 1
37 34 36 eqtrdi z = 2 p = 1 2 p z = 1
38 37 unieqd z = 2 p = 1 2 p z = 1
39 7 nesymi ¬ 2 = 1
40 eqeq1 z = 2 z = 1 2 = 1
41 39 40 mtbiri z = 2 ¬ z = 1
42 41 iffalsed z = 2 if z = 1 2 1 = 1
43 42 adantr z = 2 p = 1 2 if z = 1 2 1 = 1
44 30 38 43 3eqtr4a z = 2 p = 1 2 p z = if z = 1 2 1
45 44 ex z = 2 p = 1 2 p z = if z = 1 2 1
46 29 45 jaoi z = 1 z = 2 p = 1 2 p z = if z = 1 2 1
47 15 46 syl z 1 2 p = 1 2 p z = if z = 1 2 1
48 47 impcom p = 1 2 z 1 2 p z = if z = 1 2 1
49 14 48 eqtrd p = 1 2 z 1 2 if z p p z z = if z = 1 2 1
50 11 49 sylan p 1 2 z 1 2 if z p p z z = if z = 1 2 1
51 50 mpteq2dva p 1 2 z 1 2 if z p p z z = z 1 2 if z = 1 2 1
52 51 mpteq2ia p 1 2 z 1 2 if z p p z z = p 1 2 z 1 2 if z = 1 2 1
53 10 52 eqtri p t 𝒫 1 2 | t 2 𝑜 z 1 2 if z p p z z = p 1 2 z 1 2 if z = 1 2 1
54 4 53 eqtri pmTrsp 1 2 = p 1 2 z 1 2 if z = 1 2 1