Metamath Proof Explorer


Theorem pmtrrn

Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T = pmTrsp D
pmtrrn.r R = ran T
Assertion pmtrrn D V P D P 2 𝑜 T P R

Proof

Step Hyp Ref Expression
1 pmtrrn.t T = pmTrsp D
2 pmtrrn.r R = ran T
3 mptexg D V y D if y z z y y V
4 3 ralrimivw D V z x 𝒫 D | x 2 𝑜 y D if y z z y y V
5 4 3ad2ant1 D V P D P 2 𝑜 z x 𝒫 D | x 2 𝑜 y D if y z z y y V
6 eqid z x 𝒫 D | x 2 𝑜 y D if y z z y y = z x 𝒫 D | x 2 𝑜 y D if y z z y y
7 6 fnmpt z x 𝒫 D | x 2 𝑜 y D if y z z y y V z x 𝒫 D | x 2 𝑜 y D if y z z y y Fn x 𝒫 D | x 2 𝑜
8 5 7 syl D V P D P 2 𝑜 z x 𝒫 D | x 2 𝑜 y D if y z z y y Fn x 𝒫 D | x 2 𝑜
9 1 pmtrfval D V T = z x 𝒫 D | x 2 𝑜 y D if y z z y y
10 9 3ad2ant1 D V P D P 2 𝑜 T = z x 𝒫 D | x 2 𝑜 y D if y z z y y
11 10 fneq1d D V P D P 2 𝑜 T Fn x 𝒫 D | x 2 𝑜 z x 𝒫 D | x 2 𝑜 y D if y z z y y Fn x 𝒫 D | x 2 𝑜
12 8 11 mpbird D V P D P 2 𝑜 T Fn x 𝒫 D | x 2 𝑜
13 breq1 x = P x 2 𝑜 P 2 𝑜
14 elpw2g D V P 𝒫 D P D
15 14 biimpar D V P D P 𝒫 D
16 15 3adant3 D V P D P 2 𝑜 P 𝒫 D
17 simp3 D V P D P 2 𝑜 P 2 𝑜
18 13 16 17 elrabd D V P D P 2 𝑜 P x 𝒫 D | x 2 𝑜
19 fnfvelrn T Fn x 𝒫 D | x 2 𝑜 P x 𝒫 D | x 2 𝑜 T P ran T
20 12 18 19 syl2anc D V P D P 2 𝑜 T P ran T
21 20 2 eleqtrrdi D V P D P 2 𝑜 T P R