Metamath Proof Explorer


Theorem pmtrsn

Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for A e/ _V , i.e. for the empty set { A } = (/) resulting in ( pmTrsp(/) ) = (/) . (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion pmtrsn pmTrsp A =

Proof

Step Hyp Ref Expression
1 snex A V
2 eqid pmTrsp A = pmTrsp A
3 2 pmtrfval A V pmTrsp A = p y 𝒫 A | y 2 𝑜 z A if z p p z z
4 1 3 ax-mp pmTrsp A = p y 𝒫 A | y 2 𝑜 z A if z p p z z
5 eqid p y 𝒫 A | y 2 𝑜 z A if z p p z z = p y 𝒫 A | y 2 𝑜 z A if z p p z z
6 5 dmmpt dom p y 𝒫 A | y 2 𝑜 z A if z p p z z = p y 𝒫 A | y 2 𝑜 | z A if z p p z z V
7 2on0 2 𝑜
8 ensymb 2 𝑜 2 𝑜
9 en0 2 𝑜 2 𝑜 =
10 8 9 bitri 2 𝑜 2 𝑜 =
11 7 10 nemtbir ¬ 2 𝑜
12 snnen2o ¬ A 2 𝑜
13 0ex V
14 breq1 y = y 2 𝑜 2 𝑜
15 14 notbid y = ¬ y 2 𝑜 ¬ 2 𝑜
16 breq1 y = A y 2 𝑜 A 2 𝑜
17 16 notbid y = A ¬ y 2 𝑜 ¬ A 2 𝑜
18 13 1 15 17 ralpr y A ¬ y 2 𝑜 ¬ 2 𝑜 ¬ A 2 𝑜
19 11 12 18 mpbir2an y A ¬ y 2 𝑜
20 pwsn 𝒫 A = A
21 20 raleqi y 𝒫 A ¬ y 2 𝑜 y A ¬ y 2 𝑜
22 19 21 mpbir y 𝒫 A ¬ y 2 𝑜
23 rabeq0 y 𝒫 A | y 2 𝑜 = y 𝒫 A ¬ y 2 𝑜
24 22 23 mpbir y 𝒫 A | y 2 𝑜 =
25 24 rabeqi p y 𝒫 A | y 2 𝑜 | z A if z p p z z V = p | z A if z p p z z V
26 rab0 p | z A if z p p z z V =
27 6 25 26 3eqtri dom p y 𝒫 A | y 2 𝑜 z A if z p p z z =
28 mptrel Rel p y 𝒫 A | y 2 𝑜 z A if z p p z z
29 reldm0 Rel p y 𝒫 A | y 2 𝑜 z A if z p p z z p y 𝒫 A | y 2 𝑜 z A if z p p z z = dom p y 𝒫 A | y 2 𝑜 z A if z p p z z =
30 28 29 ax-mp p y 𝒫 A | y 2 𝑜 z A if z p p z z = dom p y 𝒫 A | y 2 𝑜 z A if z p p z z =
31 27 30 mpbir p y 𝒫 A | y 2 𝑜 z A if z p p z z =
32 4 31 eqtri pmTrsp A =