Metamath Proof Explorer


Theorem pmtrval

Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T = pmTrsp D
Assertion pmtrval D V P D P 2 𝑜 T P = z D if z P P z z

Proof

Step Hyp Ref Expression
1 pmtrfval.t T = pmTrsp D
2 1 pmtrfval D V T = p y 𝒫 D | y 2 𝑜 z D if z p p z z
3 2 fveq1d D V T P = p y 𝒫 D | y 2 𝑜 z D if z p p z z P
4 3 3ad2ant1 D V P D P 2 𝑜 T P = p y 𝒫 D | y 2 𝑜 z D if z p p z z P
5 eqid p y 𝒫 D | y 2 𝑜 z D if z p p z z = p y 𝒫 D | y 2 𝑜 z D if z p p z z
6 eleq2 p = P z p z P
7 difeq1 p = P p z = P z
8 7 unieqd p = P p z = P z
9 6 8 ifbieq1d p = P if z p p z z = if z P P z z
10 9 mpteq2dv p = P z D if z p p z z = z D if z P P z z
11 breq1 y = P y 2 𝑜 P 2 𝑜
12 elpw2g D V P 𝒫 D P D
13 12 biimpar D V P D P 𝒫 D
14 13 3adant3 D V P D P 2 𝑜 P 𝒫 D
15 simp3 D V P D P 2 𝑜 P 2 𝑜
16 11 14 15 elrabd D V P D P 2 𝑜 P y 𝒫 D | y 2 𝑜
17 mptexg D V z D if z P P z z V
18 17 3ad2ant1 D V P D P 2 𝑜 z D if z P P z z V
19 5 10 16 18 fvmptd3 D V P D P 2 𝑜 p y 𝒫 D | y 2 𝑜 z D if z p p z z P = z D if z P P z z
20 4 19 eqtrd D V P D P 2 𝑜 T P = z D if z P P z z