Metamath Proof Explorer


Theorem pmvalg

Description: The value of the partial mapping operation. ( A ^pm B ) is the set of all partial functions that map from B to A . (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion pmvalg A C B D A 𝑝𝑚 B = f 𝒫 B × A | Fun f

Proof

Step Hyp Ref Expression
1 ssrab2 f 𝒫 B × A | Fun f 𝒫 B × A
2 xpexg B D A C B × A V
3 2 ancoms A C B D B × A V
4 3 pwexd A C B D 𝒫 B × A V
5 ssexg f 𝒫 B × A | Fun f 𝒫 B × A 𝒫 B × A V f 𝒫 B × A | Fun f V
6 1 4 5 sylancr A C B D f 𝒫 B × A | Fun f V
7 elex A C A V
8 elex B D B V
9 xpeq2 x = A y × x = y × A
10 9 pweqd x = A 𝒫 y × x = 𝒫 y × A
11 10 rabeqdv x = A f 𝒫 y × x | Fun f = f 𝒫 y × A | Fun f
12 xpeq1 y = B y × A = B × A
13 12 pweqd y = B 𝒫 y × A = 𝒫 B × A
14 13 rabeqdv y = B f 𝒫 y × A | Fun f = f 𝒫 B × A | Fun f
15 df-pm 𝑝𝑚 = x V , y V f 𝒫 y × x | Fun f
16 11 14 15 ovmpog A V B V f 𝒫 B × A | Fun f V A 𝑝𝑚 B = f 𝒫 B × A | Fun f
17 16 3expia A V B V f 𝒫 B × A | Fun f V A 𝑝𝑚 B = f 𝒫 B × A | Fun f
18 7 8 17 syl2an A C B D f 𝒫 B × A | Fun f V A 𝑝𝑚 B = f 𝒫 B × A | Fun f
19 6 18 mpd A C B D A 𝑝𝑚 B = f 𝒫 B × A | Fun f