Metamath Proof Explorer


Theorem pncan2s

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion pncan2s Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Could not format ( A +s B ) = ( A +s B ) : No typesetting found for |- ( A +s B ) = ( A +s B ) with typecode |-
2 addscl Could not format ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) with typecode |-
3 simpl A No B No A No
4 simpr A No B No B No
5 2 3 4 subaddsd Could not format ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s A ) = B <-> ( A +s B ) = ( A +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s A ) = B <-> ( A +s B ) = ( A +s B ) ) ) with typecode |-
6 1 5 mpbiri Could not format ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B ) with typecode |-