Metamath Proof Explorer


Theorem pncan3s

Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncan3s Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Could not format ( B -s A ) = ( B -s A ) : No typesetting found for |- ( B -s A ) = ( B -s A ) with typecode |-
2 simpr A No B No B No
3 simpl A No B No A No
4 2 3 subscld Could not format ( ( A e. No /\ B e. No ) -> ( B -s A ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( B -s A ) e. No ) with typecode |-
5 2 3 4 subaddsd Could not format ( ( A e. No /\ B e. No ) -> ( ( B -s A ) = ( B -s A ) <-> ( A +s ( B -s A ) ) = B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( B -s A ) = ( B -s A ) <-> ( A +s ( B -s A ) ) = B ) ) with typecode |-
6 1 5 mpbii Could not format ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) with typecode |-