Step |
Hyp |
Ref |
Expression |
1 |
|
pnfneige0.j |
|
2 |
|
0red |
|
3 |
|
simpllr |
|
4 |
2 3
|
ifclda |
|
5 |
|
ovif |
|
6 |
|
rexr |
|
7 |
|
0xr |
|
8 |
7
|
a1i |
|
9 |
|
pnfxr |
|
10 |
9
|
a1i |
|
11 |
|
iocinif |
|
12 |
6 8 10 11
|
syl3anc |
|
13 |
5 12
|
eqtr4id |
|
14 |
13
|
ad2antlr |
|
15 |
|
iocssicc |
|
16 |
|
sslin |
|
17 |
15 16
|
mp1i |
|
18 |
|
simpr |
|
19 |
|
ssin |
|
20 |
19
|
biimpri |
|
21 |
20
|
simpld |
|
22 |
|
ssinss1 |
|
23 |
18 21 22
|
3syl |
|
24 |
17 23
|
sstrd |
|
25 |
14 24
|
eqsstrd |
|
26 |
|
oveq1 |
|
27 |
26
|
sseq1d |
|
28 |
27
|
rspcev |
|
29 |
4 25 28
|
syl2anc |
|
30 |
|
letopon |
|
31 |
|
iccssxr |
|
32 |
|
resttopon |
|
33 |
30 31 32
|
mp2an |
|
34 |
33
|
topontopi |
|
35 |
34
|
a1i |
|
36 |
|
ovex |
|
37 |
36
|
a1i |
|
38 |
|
xrge0topn |
|
39 |
1 38
|
eqtri |
|
40 |
39
|
eleq2i |
|
41 |
40
|
biimpi |
|
42 |
|
elrestr |
|
43 |
35 37 41 42
|
syl3anc |
|
44 |
|
letop |
|
45 |
|
ovex |
|
46 |
|
restabs |
|
47 |
44 15 45 46
|
mp3an |
|
48 |
43 47
|
eleqtrdi |
|
49 |
44
|
a1i |
|
50 |
|
iocpnfordt |
|
51 |
50
|
a1i |
|
52 |
|
ssidd |
|
53 |
|
inss2 |
|
54 |
53
|
a1i |
|
55 |
|
restopnb |
|
56 |
49 37 51 52 54 55
|
syl23anc |
|
57 |
48 56
|
mpbird |
|
58 |
57
|
adantr |
|
59 |
|
simpr |
|
60 |
|
0ltpnf |
|
61 |
|
ubioc1 |
|
62 |
7 9 60 61
|
mp3an |
|
63 |
62
|
a1i |
|
64 |
59 63
|
elind |
|
65 |
|
pnfnei |
|
66 |
58 64 65
|
syl2anc |
|
67 |
29 66
|
r19.29a |
|