Description: A neighborhood of +oo contains an unbounded interval based at a real number. See pnfnei . (Contributed by Thierry Arnoux, 31-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pnfneige0.j | |
|
Assertion | pnfneige0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfneige0.j | |
|
2 | 0red | |
|
3 | simpllr | |
|
4 | 2 3 | ifclda | |
5 | ovif | |
|
6 | rexr | |
|
7 | 0xr | |
|
8 | 7 | a1i | |
9 | pnfxr | |
|
10 | 9 | a1i | |
11 | iocinif | |
|
12 | 6 8 10 11 | syl3anc | |
13 | 5 12 | eqtr4id | |
14 | 13 | ad2antlr | |
15 | iocssicc | |
|
16 | sslin | |
|
17 | 15 16 | mp1i | |
18 | simpr | |
|
19 | ssin | |
|
20 | 19 | biimpri | |
21 | 20 | simpld | |
22 | ssinss1 | |
|
23 | 18 21 22 | 3syl | |
24 | 17 23 | sstrd | |
25 | 14 24 | eqsstrd | |
26 | oveq1 | |
|
27 | 26 | sseq1d | |
28 | 27 | rspcev | |
29 | 4 25 28 | syl2anc | |
30 | letopon | |
|
31 | iccssxr | |
|
32 | resttopon | |
|
33 | 30 31 32 | mp2an | |
34 | 33 | topontopi | |
35 | 34 | a1i | |
36 | ovex | |
|
37 | 36 | a1i | |
38 | xrge0topn | |
|
39 | 1 38 | eqtri | |
40 | 39 | eleq2i | |
41 | 40 | biimpi | |
42 | elrestr | |
|
43 | 35 37 41 42 | syl3anc | |
44 | letop | |
|
45 | ovex | |
|
46 | restabs | |
|
47 | 44 15 45 46 | mp3an | |
48 | 43 47 | eleqtrdi | |
49 | 44 | a1i | |
50 | iocpnfordt | |
|
51 | 50 | a1i | |
52 | ssidd | |
|
53 | inss2 | |
|
54 | 53 | a1i | |
55 | restopnb | |
|
56 | 49 37 51 52 54 55 | syl23anc | |
57 | 48 56 | mpbird | |
58 | 57 | adantr | |
59 | simpr | |
|
60 | 0ltpnf | |
|
61 | ubioc1 | |
|
62 | 7 9 60 61 | mp3an | |
63 | 62 | a1i | |
64 | 59 63 | elind | |
65 | pnfnei | |
|
66 | 58 64 65 | syl2anc | |
67 | 29 66 | r19.29a | |