Metamath Proof Explorer


Theorem pnfneige0

Description: A neighborhood of +oo contains an unbounded interval based at a real number. See pnfnei . (Contributed by Thierry Arnoux, 31-Jul-2017)

Ref Expression
Hypothesis pnfneige0.j J=TopOpen𝑠*𝑠0+∞
Assertion pnfneige0 AJ+∞Axx+∞A

Proof

Step Hyp Ref Expression
1 pnfneige0.j J=TopOpen𝑠*𝑠0+∞
2 0red AJ+∞Ayy+∞A0+∞y<00
3 simpllr AJ+∞Ayy+∞A0+∞¬y<0y
4 2 3 ifclda AJ+∞Ayy+∞A0+∞ify<00y
5 ovif ify<00y+∞=ify<00+∞y+∞
6 rexr yy*
7 0xr 0*
8 7 a1i y0*
9 pnfxr +∞*
10 9 a1i y+∞*
11 iocinif y*0*+∞*y+∞0+∞=ify<00+∞y+∞
12 6 8 10 11 syl3anc yy+∞0+∞=ify<00+∞y+∞
13 5 12 eqtr4id yify<00y+∞=y+∞0+∞
14 13 ad2antlr AJ+∞Ayy+∞A0+∞ify<00y+∞=y+∞0+∞
15 iocssicc 0+∞0+∞
16 sslin 0+∞0+∞y+∞0+∞y+∞0+∞
17 15 16 mp1i AJ+∞Ayy+∞A0+∞y+∞0+∞y+∞0+∞
18 simpr AJ+∞Ayy+∞A0+∞y+∞A0+∞
19 ssin y+∞Ay+∞0+∞y+∞A0+∞
20 19 biimpri y+∞A0+∞y+∞Ay+∞0+∞
21 20 simpld y+∞A0+∞y+∞A
22 ssinss1 y+∞Ay+∞0+∞A
23 18 21 22 3syl AJ+∞Ayy+∞A0+∞y+∞0+∞A
24 17 23 sstrd AJ+∞Ayy+∞A0+∞y+∞0+∞A
25 14 24 eqsstrd AJ+∞Ayy+∞A0+∞ify<00y+∞A
26 oveq1 x=ify<00yx+∞=ify<00y+∞
27 26 sseq1d x=ify<00yx+∞Aify<00y+∞A
28 27 rspcev ify<00yify<00y+∞Axx+∞A
29 4 25 28 syl2anc AJ+∞Ayy+∞A0+∞xx+∞A
30 letopon ordTopTopOn*
31 iccssxr 0+∞*
32 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
33 30 31 32 mp2an ordTop𝑡0+∞TopOn0+∞
34 33 topontopi ordTop𝑡0+∞Top
35 34 a1i AJordTop𝑡0+∞Top
36 ovex 0+∞V
37 36 a1i AJ0+∞V
38 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
39 1 38 eqtri J=ordTop𝑡0+∞
40 39 eleq2i AJAordTop𝑡0+∞
41 40 biimpi AJAordTop𝑡0+∞
42 elrestr ordTop𝑡0+∞Top0+∞VAordTop𝑡0+∞A0+∞ordTop𝑡0+∞𝑡0+∞
43 35 37 41 42 syl3anc AJA0+∞ordTop𝑡0+∞𝑡0+∞
44 letop ordTopTop
45 ovex 0+∞V
46 restabs ordTopTop0+∞0+∞0+∞VordTop𝑡0+∞𝑡0+∞=ordTop𝑡0+∞
47 44 15 45 46 mp3an ordTop𝑡0+∞𝑡0+∞=ordTop𝑡0+∞
48 43 47 eleqtrdi AJA0+∞ordTop𝑡0+∞
49 44 a1i AJordTopTop
50 iocpnfordt 0+∞ordTop
51 50 a1i AJ0+∞ordTop
52 ssidd AJ0+∞0+∞
53 inss2 A0+∞0+∞
54 53 a1i AJA0+∞0+∞
55 restopnb ordTopTop0+∞V0+∞ordTop0+∞0+∞A0+∞0+∞A0+∞ordTopA0+∞ordTop𝑡0+∞
56 49 37 51 52 54 55 syl23anc AJA0+∞ordTopA0+∞ordTop𝑡0+∞
57 48 56 mpbird AJA0+∞ordTop
58 57 adantr AJ+∞AA0+∞ordTop
59 simpr AJ+∞A+∞A
60 0ltpnf 0<+∞
61 ubioc1 0*+∞*0<+∞+∞0+∞
62 7 9 60 61 mp3an +∞0+∞
63 62 a1i AJ+∞A+∞0+∞
64 59 63 elind AJ+∞A+∞A0+∞
65 pnfnei A0+∞ordTop+∞A0+∞yy+∞A0+∞
66 58 64 65 syl2anc AJ+∞Ayy+∞A0+∞
67 29 66 r19.29a AJ+∞Axx+∞A