Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
pnfnlt
Next ⟩
nltmnf
Metamath Proof Explorer
Ascii
Unicode
Theorem
pnfnlt
Description:
No extended real is greater than plus infinity.
(Contributed by
NM
, 15-Oct-2005)
Ref
Expression
Assertion
pnfnlt
⊢
A
∈
ℝ
*
→
¬
+∞
<
A
Proof
Step
Hyp
Ref
Expression
1
pnfnre
⊢
+∞
∉
ℝ
2
1
neli
⊢
¬
+∞
∈
ℝ
3
2
intnanr
⊢
¬
+∞
∈
ℝ
∧
A
∈
ℝ
4
3
intnanr
⊢
¬
+∞
∈
ℝ
∧
A
∈
ℝ
∧
+∞
<
ℝ
A
5
pnfnemnf
⊢
+∞
≠
−∞
6
5
neii
⊢
¬
+∞
=
−∞
7
6
intnanr
⊢
¬
+∞
=
−∞
∧
A
=
+∞
8
4
7
pm3.2ni
⊢
¬
+∞
∈
ℝ
∧
A
∈
ℝ
∧
+∞
<
ℝ
A
∨
+∞
=
−∞
∧
A
=
+∞
9
2
intnanr
⊢
¬
+∞
∈
ℝ
∧
A
=
+∞
10
6
intnanr
⊢
¬
+∞
=
−∞
∧
A
∈
ℝ
11
9
10
pm3.2ni
⊢
¬
+∞
∈
ℝ
∧
A
=
+∞
∨
+∞
=
−∞
∧
A
∈
ℝ
12
8
11
pm3.2ni
⊢
¬
+∞
∈
ℝ
∧
A
∈
ℝ
∧
+∞
<
ℝ
A
∨
+∞
=
−∞
∧
A
=
+∞
∨
+∞
∈
ℝ
∧
A
=
+∞
∨
+∞
=
−∞
∧
A
∈
ℝ
13
pnfxr
⊢
+∞
∈
ℝ
*
14
ltxr
⊢
+∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
+∞
<
A
↔
+∞
∈
ℝ
∧
A
∈
ℝ
∧
+∞
<
ℝ
A
∨
+∞
=
−∞
∧
A
=
+∞
∨
+∞
∈
ℝ
∧
A
=
+∞
∨
+∞
=
−∞
∧
A
∈
ℝ
15
13
14
mpan
⊢
A
∈
ℝ
*
→
+∞
<
A
↔
+∞
∈
ℝ
∧
A
∈
ℝ
∧
+∞
<
ℝ
A
∨
+∞
=
−∞
∧
A
=
+∞
∨
+∞
∈
ℝ
∧
A
=
+∞
∨
+∞
=
−∞
∧
A
∈
ℝ
16
12
15
mtbiri
⊢
A
∈
ℝ
*
→
¬
+∞
<
A