Metamath Proof Explorer


Theorem pnpncand

Description: Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses pnpncand.1 φ A
pnpncand.2 φ B
pnpncand.3 φ C
Assertion pnpncand φ A + B C + C B = A

Proof

Step Hyp Ref Expression
1 pnpncand.1 φ A
2 pnpncand.2 φ B
3 pnpncand.3 φ C
4 2 3 subcld φ B C
5 1 4 addcld φ A + B - C
6 5 2 3 subsub2d φ A + B C - B C = A + B C + C B
7 1 4 pncand φ A + B C - B C = A
8 6 7 eqtr3d φ A + B C + C B = A