Metamath Proof Explorer


Theorem pnt

Description: The Prime Number Theorem: the number of prime numbers less than x tends asymptotically to x / log ( x ) as x goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt x 1 +∞ π _ x x log x 1

Proof

Step Hyp Ref Expression
1 1xr 1 *
2 1lt2 1 < 2
3 df-ioo . = x * , y * z * | x < z z < y
4 df-ico . = x * , y * z * | x z z < y
5 xrltletr 1 * 2 * w * 1 < 2 2 w 1 < w
6 3 4 5 ixxss1 1 * 1 < 2 2 +∞ 1 +∞
7 1 2 6 mp2an 2 +∞ 1 +∞
8 resmpt 2 +∞ 1 +∞ x 1 +∞ π _ x x log x 2 +∞ = x 2 +∞ π _ x x log x
9 7 8 mp1i x 1 +∞ π _ x x log x 2 +∞ = x 2 +∞ π _ x x log x
10 7 sseli x 2 +∞ x 1 +∞
11 ioossre 1 +∞
12 11 sseli x 1 +∞ x
13 10 12 syl x 2 +∞ x
14 2re 2
15 pnfxr +∞ *
16 elico2 2 +∞ * x 2 +∞ x 2 x x < +∞
17 14 15 16 mp2an x 2 +∞ x 2 x x < +∞
18 17 simp2bi x 2 +∞ 2 x
19 chtrpcl x 2 x θ x +
20 13 18 19 syl2anc x 2 +∞ θ x +
21 0red x 1 +∞ 0
22 1red x 1 +∞ 1
23 0lt1 0 < 1
24 23 a1i x 1 +∞ 0 < 1
25 eliooord x 1 +∞ 1 < x x < +∞
26 25 simpld x 1 +∞ 1 < x
27 21 22 12 24 26 lttrd x 1 +∞ 0 < x
28 12 27 elrpd x 1 +∞ x +
29 10 28 syl x 2 +∞ x +
30 20 29 rpdivcld x 2 +∞ θ x x +
31 30 adantl x 2 +∞ θ x x +
32 ppinncl x 2 x π _ x
33 13 18 32 syl2anc x 2 +∞ π _ x
34 33 nnrpd x 2 +∞ π _ x +
35 12 26 rplogcld x 1 +∞ log x +
36 10 35 syl x 2 +∞ log x +
37 34 36 rpmulcld x 2 +∞ π _ x log x +
38 20 37 rpdivcld x 2 +∞ θ x π _ x log x +
39 38 adantl x 2 +∞ θ x π _ x log x +
40 29 ssriv 2 +∞ +
41 resmpt 2 +∞ + x + θ x x 2 +∞ = x 2 +∞ θ x x
42 40 41 ax-mp x + θ x x 2 +∞ = x 2 +∞ θ x x
43 pnt2 x + θ x x 1
44 rlimres x + θ x x 1 x + θ x x 2 +∞ 1
45 43 44 mp1i x + θ x x 2 +∞ 1
46 42 45 eqbrtrrid x 2 +∞ θ x x 1
47 chtppilim x 2 +∞ θ x π _ x log x 1
48 47 a1i x 2 +∞ θ x π _ x log x 1
49 ax-1ne0 1 0
50 49 a1i 1 0
51 38 rpne0d x 2 +∞ θ x π _ x log x 0
52 51 adantl x 2 +∞ θ x π _ x log x 0
53 31 39 46 48 50 52 rlimdiv x 2 +∞ θ x x θ x π _ x log x 1 1
54 13 recnd x 2 +∞ x
55 chtcl x θ x
56 12 55 syl x 1 +∞ θ x
57 56 recnd x 1 +∞ θ x
58 10 57 syl x 2 +∞ θ x
59 54 58 mulcomd x 2 +∞ x θ x = θ x x
60 59 oveq2d x 2 +∞ θ x π _ x log x x θ x = θ x π _ x log x θ x x
61 37 rpcnd x 2 +∞ π _ x log x
62 29 rpne0d x 2 +∞ x 0
63 20 rpne0d x 2 +∞ θ x 0
64 61 54 58 62 63 divcan5d x 2 +∞ θ x π _ x log x θ x x = π _ x log x x
65 60 64 eqtrd x 2 +∞ θ x π _ x log x x θ x = π _ x log x x
66 37 rpne0d x 2 +∞ π _ x log x 0
67 58 54 58 61 62 66 63 divdivdivd x 2 +∞ θ x x θ x π _ x log x = θ x π _ x log x x θ x
68 33 nncnd x 2 +∞ π _ x
69 36 rpcnd x 2 +∞ log x
70 36 rpne0d x 2 +∞ log x 0
71 68 54 69 62 70 divdiv2d x 2 +∞ π _ x x log x = π _ x log x x
72 65 67 71 3eqtr4d x 2 +∞ θ x x θ x π _ x log x = π _ x x log x
73 72 mpteq2ia x 2 +∞ θ x x θ x π _ x log x = x 2 +∞ π _ x x log x
74 1div1e1 1 1 = 1
75 53 73 74 3brtr3g x 2 +∞ π _ x x log x 1
76 9 75 eqbrtrd x 1 +∞ π _ x x log x 2 +∞ 1
77 ppicl x π _ x 0
78 12 77 syl x 1 +∞ π _ x 0
79 78 nn0red x 1 +∞ π _ x
80 28 35 rpdivcld x 1 +∞ x log x +
81 79 80 rerpdivcld x 1 +∞ π _ x x log x
82 81 recnd x 1 +∞ π _ x x log x
83 82 adantl x 1 +∞ π _ x x log x
84 83 fmpttd x 1 +∞ π _ x x log x : 1 +∞
85 11 a1i 1 +∞
86 14 a1i 2
87 84 85 86 rlimresb x 1 +∞ π _ x x log x 1 x 1 +∞ π _ x x log x 2 +∞ 1
88 76 87 mpbird x 1 +∞ π _ x x log x 1
89 88 mptru x 1 +∞ π _ x x log x 1