Step |
Hyp |
Ref |
Expression |
1 |
|
1xr |
|
2 |
|
1lt2 |
|
3 |
|
df-ioo |
|
4 |
|
df-ico |
|
5 |
|
xrltletr |
|
6 |
3 4 5
|
ixxss1 |
|
7 |
1 2 6
|
mp2an |
|
8 |
|
resmpt |
|
9 |
7 8
|
mp1i |
|
10 |
7
|
sseli |
|
11 |
|
ioossre |
|
12 |
11
|
sseli |
|
13 |
10 12
|
syl |
|
14 |
|
2re |
|
15 |
|
pnfxr |
|
16 |
|
elico2 |
|
17 |
14 15 16
|
mp2an |
|
18 |
17
|
simp2bi |
|
19 |
|
chtrpcl |
|
20 |
13 18 19
|
syl2anc |
|
21 |
|
0red |
|
22 |
|
1red |
|
23 |
|
0lt1 |
|
24 |
23
|
a1i |
|
25 |
|
eliooord |
|
26 |
25
|
simpld |
|
27 |
21 22 12 24 26
|
lttrd |
|
28 |
12 27
|
elrpd |
|
29 |
10 28
|
syl |
|
30 |
20 29
|
rpdivcld |
|
31 |
30
|
adantl |
|
32 |
|
ppinncl |
|
33 |
13 18 32
|
syl2anc |
|
34 |
33
|
nnrpd |
|
35 |
12 26
|
rplogcld |
|
36 |
10 35
|
syl |
|
37 |
34 36
|
rpmulcld |
|
38 |
20 37
|
rpdivcld |
|
39 |
38
|
adantl |
|
40 |
29
|
ssriv |
|
41 |
|
resmpt |
|
42 |
40 41
|
ax-mp |
|
43 |
|
pnt2 |
|
44 |
|
rlimres |
|
45 |
43 44
|
mp1i |
|
46 |
42 45
|
eqbrtrrid |
|
47 |
|
chtppilim |
|
48 |
47
|
a1i |
|
49 |
|
ax-1ne0 |
|
50 |
49
|
a1i |
|
51 |
38
|
rpne0d |
|
52 |
51
|
adantl |
|
53 |
31 39 46 48 50 52
|
rlimdiv |
|
54 |
13
|
recnd |
|
55 |
|
chtcl |
|
56 |
12 55
|
syl |
|
57 |
56
|
recnd |
|
58 |
10 57
|
syl |
|
59 |
54 58
|
mulcomd |
|
60 |
59
|
oveq2d |
|
61 |
37
|
rpcnd |
|
62 |
29
|
rpne0d |
|
63 |
20
|
rpne0d |
|
64 |
61 54 58 62 63
|
divcan5d |
|
65 |
60 64
|
eqtrd |
|
66 |
37
|
rpne0d |
|
67 |
58 54 58 61 62 66 63
|
divdivdivd |
|
68 |
33
|
nncnd |
|
69 |
36
|
rpcnd |
|
70 |
36
|
rpne0d |
|
71 |
68 54 69 62 70
|
divdiv2d |
|
72 |
65 67 71
|
3eqtr4d |
|
73 |
72
|
mpteq2ia |
|
74 |
|
1div1e1 |
|
75 |
53 73 74
|
3brtr3g |
|
76 |
9 75
|
eqbrtrd |
|
77 |
|
ppicl |
|
78 |
12 77
|
syl |
|
79 |
78
|
nn0red |
|
80 |
28 35
|
rpdivcld |
|
81 |
79 80
|
rerpdivcld |
|
82 |
81
|
recnd |
|
83 |
82
|
adantl |
|
84 |
83
|
fmpttd |
|
85 |
11
|
a1i |
|
86 |
14
|
a1i |
|
87 |
84 85 86
|
rlimresb |
|
88 |
76 87
|
mpbird |
|
89 |
88
|
mptru |
|