Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|
2 |
|
elicopnf |
|
3 |
1 2
|
ax-mp |
|
4 |
|
chprpcl |
|
5 |
3 4
|
sylbi |
|
6 |
3
|
simplbi |
|
7 |
|
0red |
|
8 |
1
|
a1i |
|
9 |
|
2pos |
|
10 |
9
|
a1i |
|
11 |
3
|
simprbi |
|
12 |
7 8 6 10 11
|
ltletrd |
|
13 |
6 12
|
elrpd |
|
14 |
5 13
|
rpdivcld |
|
15 |
14
|
adantl |
|
16 |
|
chtrpcl |
|
17 |
3 16
|
sylbi |
|
18 |
5 17
|
rpdivcld |
|
19 |
18
|
adantl |
|
20 |
13
|
ssriv |
|
21 |
20
|
a1i |
|
22 |
|
pnt3 |
|
23 |
22
|
a1i |
|
24 |
21 23
|
rlimres2 |
|
25 |
|
chpchtlim |
|
26 |
25
|
a1i |
|
27 |
|
ax-1ne0 |
|
28 |
27
|
a1i |
|
29 |
19
|
rpne0d |
|
30 |
15 19 24 26 28 29
|
rlimdiv |
|
31 |
|
rpre |
|
32 |
|
chpcl |
|
33 |
31 32
|
syl |
|
34 |
33
|
recnd |
|
35 |
13 34
|
syl |
|
36 |
13
|
rpcnne0d |
|
37 |
5
|
rpcnne0d |
|
38 |
17
|
rpcnne0d |
|
39 |
|
divdivdiv |
|
40 |
35 36 37 38 39
|
syl22anc |
|
41 |
6
|
recnd |
|
42 |
41 35
|
mulcomd |
|
43 |
42
|
oveq2d |
|
44 |
|
chtcl |
|
45 |
31 44
|
syl |
|
46 |
45
|
recnd |
|
47 |
13 46
|
syl |
|
48 |
|
divcan5 |
|
49 |
47 36 37 48
|
syl3anc |
|
50 |
40 43 49
|
3eqtrd |
|
51 |
50
|
mpteq2ia |
|
52 |
|
resmpt |
|
53 |
20 52
|
ax-mp |
|
54 |
51 53
|
eqtr4i |
|
55 |
|
1div1e1 |
|
56 |
30 54 55
|
3brtr3g |
|
57 |
|
rerpdivcl |
|
58 |
45 57
|
mpancom |
|
59 |
58
|
adantl |
|
60 |
59
|
recnd |
|
61 |
60
|
fmpttd |
|
62 |
|
rpssre |
|
63 |
62
|
a1i |
|
64 |
1
|
a1i |
|
65 |
61 63 64
|
rlimresb |
|
66 |
56 65
|
mpbird |
|
67 |
66
|
mptru |
|