Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
pntrmax |
|
3 |
1
|
pntibnd |
|
4 |
|
simpll |
|
5 |
|
simplr |
|
6 |
|
fveq2 |
|
7 |
|
id |
|
8 |
6 7
|
oveq12d |
|
9 |
8
|
fveq2d |
|
10 |
9
|
breq1d |
|
11 |
10
|
cbvralvw |
|
12 |
5 11
|
sylib |
|
13 |
|
simprll |
|
14 |
|
simprlr |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
simprr |
|
18 |
|
breq2 |
|
19 |
|
oveq2 |
|
20 |
19
|
breq1d |
|
21 |
18 20
|
anbi12d |
|
22 |
|
id |
|
23 |
22 19
|
oveq12d |
|
24 |
23
|
raleqdv |
|
25 |
21 24
|
anbi12d |
|
26 |
25
|
cbvrexvw |
|
27 |
|
breq1 |
|
28 |
|
oveq2 |
|
29 |
28
|
breq2d |
|
30 |
27 29
|
anbi12d |
|
31 |
30
|
anbi1d |
|
32 |
31
|
rexbidv |
|
33 |
26 32
|
syl5bb |
|
34 |
33
|
cbvralvw |
|
35 |
|
oveq1 |
|
36 |
35
|
raleqdv |
|
37 |
34 36
|
syl5bb |
|
38 |
37
|
ralbidv |
|
39 |
38
|
cbvrexvw |
|
40 |
39
|
ralbii |
|
41 |
17 40
|
sylib |
|
42 |
1 4 12 13 14 15 16 41
|
pntleml |
|
43 |
42
|
expr |
|
44 |
43
|
rexlimdvva |
|
45 |
3 44
|
mpi |
|
46 |
45
|
rexlimiva |
|
47 |
2 46
|
ax-mp |
|