Metamath Proof Explorer


Theorem pntibndlem1

Description: Lemma for pntibnd . (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R = a + ψ a a
pntibndlem1.1 φ A +
pntibndlem1.l L = 1 4 A + 3
Assertion pntibndlem1 φ L 0 1

Proof

Step Hyp Ref Expression
1 pntibnd.r R = a + ψ a a
2 pntibndlem1.1 φ A +
3 pntibndlem1.l L = 1 4 A + 3
4 4nn 4
5 nnrp 4 4 +
6 rpreccl 4 + 1 4 +
7 4 5 6 mp2b 1 4 +
8 3rp 3 +
9 rpaddcl A + 3 + A + 3 +
10 2 8 9 sylancl φ A + 3 +
11 rpdivcl 1 4 + A + 3 + 1 4 A + 3 +
12 7 10 11 sylancr φ 1 4 A + 3 +
13 3 12 eqeltrid φ L +
14 13 rpred φ L
15 13 rpgt0d φ 0 < L
16 rpcn 1 4 + 1 4
17 7 16 ax-mp 1 4
18 17 div1i 1 4 1 = 1 4
19 rpre 1 4 + 1 4
20 7 19 mp1i φ 1 4
21 3re 3
22 21 a1i φ 3
23 10 rpred φ A + 3
24 1lt4 1 < 4
25 4re 4
26 4pos 0 < 4
27 recgt1 4 0 < 4 1 < 4 1 4 < 1
28 25 26 27 mp2an 1 < 4 1 4 < 1
29 24 28 mpbi 1 4 < 1
30 1lt3 1 < 3
31 7 19 ax-mp 1 4
32 1re 1
33 31 32 21 lttri 1 4 < 1 1 < 3 1 4 < 3
34 29 30 33 mp2an 1 4 < 3
35 34 a1i φ 1 4 < 3
36 ltaddrp 3 A + 3 < 3 + A
37 21 2 36 sylancr φ 3 < 3 + A
38 3cn 3
39 2 rpcnd φ A
40 addcom 3 A 3 + A = A + 3
41 38 39 40 sylancr φ 3 + A = A + 3
42 37 41 breqtrd φ 3 < A + 3
43 20 22 23 35 42 lttrd φ 1 4 < A + 3
44 18 43 eqbrtrid φ 1 4 1 < A + 3
45 32 a1i φ 1
46 0lt1 0 < 1
47 46 a1i φ 0 < 1
48 10 rpregt0d φ A + 3 0 < A + 3
49 ltdiv23 1 4 1 0 < 1 A + 3 0 < A + 3 1 4 1 < A + 3 1 4 A + 3 < 1
50 20 45 47 48 49 syl121anc φ 1 4 1 < A + 3 1 4 A + 3 < 1
51 44 50 mpbid φ 1 4 A + 3 < 1
52 3 51 eqbrtrid φ L < 1
53 0xr 0 *
54 1xr 1 *
55 elioo2 0 * 1 * L 0 1 L 0 < L L < 1
56 53 54 55 mp2an L 0 1 L 0 < L L < 1
57 14 15 52 56 syl3anbrc φ L 0 1