Metamath Proof Explorer


Theorem pntibndlem2

Description: Lemma for pntibnd . The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R = a + ψ a a
pntibndlem1.1 φ A +
pntibndlem1.l L = 1 4 A + 3
pntibndlem3.2 φ x + R x x A
pntibndlem3.3 φ B +
pntibndlem3.k K = e B E 2
pntibndlem3.c C = 2 B + log 2
pntibndlem3.4 φ E 0 1
pntibndlem3.6 φ Z +
pntibndlem2.10 φ N
pntibndlem2.5 φ T +
pntibndlem2.6 φ x 1 +∞ y x 2 x ψ y ψ x 2 y x + T x log x
pntibndlem2.7 X = e T E 4 + Z
pntibndlem2.8 φ M e C E +∞
pntibndlem2.9 φ Y X +∞
pntibndlem2.11 φ Y < N N M 2 Y R N N E 2
Assertion pntibndlem2 φ z + Y < z 1 + L E z < M Y u z 1 + L E z R u u E

Proof

Step Hyp Ref Expression
1 pntibnd.r R = a + ψ a a
2 pntibndlem1.1 φ A +
3 pntibndlem1.l L = 1 4 A + 3
4 pntibndlem3.2 φ x + R x x A
5 pntibndlem3.3 φ B +
6 pntibndlem3.k K = e B E 2
7 pntibndlem3.c C = 2 B + log 2
8 pntibndlem3.4 φ E 0 1
9 pntibndlem3.6 φ Z +
10 pntibndlem2.10 φ N
11 pntibndlem2.5 φ T +
12 pntibndlem2.6 φ x 1 +∞ y x 2 x ψ y ψ x 2 y x + T x log x
13 pntibndlem2.7 X = e T E 4 + Z
14 pntibndlem2.8 φ M e C E +∞
15 pntibndlem2.9 φ Y X +∞
16 pntibndlem2.11 φ Y < N N M 2 Y R N N E 2
17 10 nnrpd φ N +
18 16 simpld φ Y < N N M 2 Y
19 18 simpld φ Y < N
20 1red φ 1
21 ioossre 0 1
22 1 2 3 pntibndlem1 φ L 0 1
23 21 22 sselid φ L
24 21 8 sselid φ E
25 23 24 remulcld φ L E
26 20 25 readdcld φ 1 + L E
27 10 nnred φ N
28 26 27 remulcld φ 1 + L E N
29 2re 2
30 remulcl 2 N 2 N
31 29 27 30 sylancr φ 2 N
32 5 rpred φ B
33 remulcl 2 B 2 B
34 29 32 33 sylancr φ 2 B
35 2rp 2 +
36 35 a1i φ 2 +
37 36 relogcld φ log 2
38 34 37 readdcld φ 2 B + log 2
39 7 38 eqeltrid φ C
40 eliooord E 0 1 0 < E E < 1
41 8 40 syl φ 0 < E E < 1
42 41 simpld φ 0 < E
43 24 42 elrpd φ E +
44 39 43 rerpdivcld φ C E
45 44 reefcld φ e C E
46 pnfxr +∞ *
47 icossre e C E +∞ * e C E +∞
48 45 46 47 sylancl φ e C E +∞
49 48 14 sseldd φ M
50 ioossre X +∞
51 50 15 sselid φ Y
52 49 51 remulcld φ M Y
53 29 a1i φ 2
54 eliooord L 0 1 0 < L L < 1
55 22 54 syl φ 0 < L L < 1
56 55 simpld φ 0 < L
57 23 56 elrpd φ L +
58 57 rpge0d φ 0 L
59 55 simprd φ L < 1
60 43 rpge0d φ 0 E
61 41 simprd φ E < 1
62 23 20 24 20 58 59 60 61 ltmul12ad φ L E < 1 1
63 1t1e1 1 1 = 1
64 62 63 breqtrdi φ L E < 1
65 25 20 20 64 ltadd2dd φ 1 + L E < 1 + 1
66 df-2 2 = 1 + 1
67 65 66 breqtrrdi φ 1 + L E < 2
68 26 53 17 67 ltmul1dd φ 1 + L E N < 2 N
69 18 simprd φ N M 2 Y
70 49 recnd φ M
71 51 recnd φ Y
72 rpcnne0 2 + 2 2 0
73 35 72 mp1i φ 2 2 0
74 div23 M Y 2 2 0 M Y 2 = M 2 Y
75 70 71 73 74 syl3anc φ M Y 2 = M 2 Y
76 69 75 breqtrrd φ N M Y 2
77 27 52 36 lemuldiv2d φ 2 N M Y N M Y 2
78 76 77 mpbird φ 2 N M Y
79 28 31 52 68 78 ltletrd φ 1 + L E N < M Y
80 1 2 3 4 5 6 7 8 2 10 pntibndlem2a φ u N 1 + L E N u N u u 1 + L E N
81 80 simp1d φ u N 1 + L E N u
82 17 adantr φ u N 1 + L E N N +
83 80 simp2d φ u N 1 + L E N N u
84 81 82 83 rpgecld φ u N 1 + L E N u +
85 1 pntrf R : +
86 85 ffvelrni u + R u
87 84 86 syl φ u N 1 + L E N R u
88 87 84 rerpdivcld φ u N 1 + L E N R u u
89 88 recnd φ u N 1 + L E N R u u
90 89 abscld φ u N 1 + L E N R u u
91 85 ffvelrni N + R N
92 17 91 syl φ R N
93 92 10 nndivred φ R N N
94 93 adantr φ u N 1 + L E N R N N
95 94 recnd φ u N 1 + L E N R N N
96 89 95 subcld φ u N 1 + L E N R u u R N N
97 96 abscld φ u N 1 + L E N R u u R N N
98 95 abscld φ u N 1 + L E N R N N
99 97 98 readdcld φ u N 1 + L E N R u u R N N + R N N
100 24 adantr φ u N 1 + L E N E
101 89 95 abs2difd φ u N 1 + L E N R u u R N N R u u R N N
102 90 98 97 lesubaddd φ u N 1 + L E N R u u R N N R u u R N N R u u R u u R N N + R N N
103 101 102 mpbid φ u N 1 + L E N R u u R u u R N N + R N N
104 100 rehalfcld φ u N 1 + L E N E 2
105 27 adantr φ u N 1 + L E N N
106 81 105 resubcld φ u N 1 + L E N u N
107 106 82 rerpdivcld φ u N 1 + L E N u N N
108 3re 3
109 108 a1i φ u N 1 + L E N 3
110 90 109 readdcld φ u N 1 + L E N R u u + 3
111 107 110 remulcld φ u N 1 + L E N u N N R u u + 3
112 11 rpred φ T
113 112 adantr φ u N 1 + L E N T
114 1red φ u N 1 + L E N 1
115 4nn 4
116 nnrp 4 4 +
117 115 116 mp1i φ 4 +
118 43 117 rpdivcld φ E 4 +
119 11 118 rpdivcld φ T E 4 +
120 119 rpred φ T E 4
121 120 reefcld φ e T E 4
122 121 adantr φ u N 1 + L E N e T E 4
123 efgt1 T E 4 + 1 < e T E 4
124 119 123 syl φ 1 < e T E 4
125 124 adantr φ u N 1 + L E N 1 < e T E 4
126 9 rpred φ Z
127 121 126 readdcld φ e T E 4 + Z
128 13 127 eqeltrid φ X
129 121 9 ltaddrpd φ e T E 4 < e T E 4 + Z
130 129 13 breqtrrdi φ e T E 4 < X
131 eliooord Y X +∞ X < Y Y < +∞
132 15 131 syl φ X < Y Y < +∞
133 132 simpld φ X < Y
134 121 128 51 130 133 lttrd φ e T E 4 < Y
135 121 51 27 134 19 lttrd φ e T E 4 < N
136 135 adantr φ u N 1 + L E N e T E 4 < N
137 114 122 105 125 136 lttrd φ u N 1 + L E N 1 < N
138 105 137 rplogcld φ u N 1 + L E N log N +
139 113 138 rerpdivcld φ u N 1 + L E N T log N
140 111 139 readdcld φ u N 1 + L E N u N N R u u + 3 + T log N
141 peano2re R u u R u u + 1
142 90 141 syl φ u N 1 + L E N R u u + 1
143 107 142 remulcld φ u N 1 + L E N u N N R u u + 1
144 chpcl u ψ u
145 81 144 syl φ u N 1 + L E N ψ u
146 chpcl N ψ N
147 105 146 syl φ u N 1 + L E N ψ N
148 145 147 resubcld φ u N 1 + L E N ψ u ψ N
149 148 82 rerpdivcld φ u N 1 + L E N ψ u ψ N N
150 143 149 readdcld φ u N 1 + L E N u N N R u u + 1 + ψ u ψ N N
151 107 90 remulcld φ u N 1 + L E N u N N R u u
152 92 adantr φ u N 1 + L E N R N
153 87 152 resubcld φ u N 1 + L E N R u R N
154 153 recnd φ u N 1 + L E N R u R N
155 154 abscld φ u N 1 + L E N R u R N
156 155 82 rerpdivcld φ u N 1 + L E N R u R N N
157 151 156 readdcld φ u N 1 + L E N u N N R u u + R u R N N
158 107 88 remulcld φ u N 1 + L E N u N N R u u
159 158 renegcld φ u N 1 + L E N u N N R u u
160 159 recnd φ u N 1 + L E N u N N R u u
161 153 82 rerpdivcld φ u N 1 + L E N R u R N N
162 161 recnd φ u N 1 + L E N R u R N N
163 160 162 abstrid φ u N 1 + L E N - u N N R u u + R u R N N u N N R u u + R u R N N
164 81 recnd φ u N 1 + L E N u
165 105 recnd φ u N 1 + L E N N
166 82 rpne0d φ u N 1 + L E N N 0
167 164 165 165 166 divsubdird φ u N 1 + L E N u N N = u N N N
168 165 166 dividd φ u N 1 + L E N N N = 1
169 168 oveq2d φ u N 1 + L E N u N N N = u N 1
170 167 169 eqtrd φ u N 1 + L E N u N N = u N 1
171 170 oveq1d φ u N 1 + L E N u N N R u u = u N 1 R u u
172 81 82 rerpdivcld φ u N 1 + L E N u N
173 172 recnd φ u N 1 + L E N u N
174 1cnd φ u N 1 + L E N 1
175 173 174 89 subdird φ u N 1 + L E N u N 1 R u u = u N R u u 1 R u u
176 84 rpcnne0d φ u N 1 + L E N u u 0
177 82 rpcnne0d φ u N 1 + L E N N N 0
178 87 recnd φ u N 1 + L E N R u
179 dmdcan u u 0 N N 0 R u u N R u u = R u N
180 176 177 178 179 syl3anc φ u N 1 + L E N u N R u u = R u N
181 89 mulid2d φ u N 1 + L E N 1 R u u = R u u
182 180 181 oveq12d φ u N 1 + L E N u N R u u 1 R u u = R u N R u u
183 171 175 182 3eqtrd φ u N 1 + L E N u N N R u u = R u N R u u
184 183 negeqd φ u N 1 + L E N u N N R u u = R u N R u u
185 87 82 rerpdivcld φ u N 1 + L E N R u N
186 185 recnd φ u N 1 + L E N R u N
187 186 89 negsubdi2d φ u N 1 + L E N R u N R u u = R u u R u N
188 184 187 eqtrd φ u N 1 + L E N u N N R u u = R u u R u N
189 152 recnd φ u N 1 + L E N R N
190 178 189 165 166 divsubdird φ u N 1 + L E N R u R N N = R u N R N N
191 188 190 oveq12d φ u N 1 + L E N - u N N R u u + R u R N N = R u u R u N + R u N - R N N
192 89 186 95 npncand φ u N 1 + L E N R u u R u N + R u N - R N N = R u u R N N
193 191 192 eqtrd φ u N 1 + L E N - u N N R u u + R u R N N = R u u R N N
194 193 fveq2d φ u N 1 + L E N - u N N R u u + R u R N N = R u u R N N
195 158 recnd φ u N 1 + L E N u N N R u u
196 195 absnegd φ u N 1 + L E N u N N R u u = u N N R u u
197 107 recnd φ u N 1 + L E N u N N
198 197 89 absmuld φ u N 1 + L E N u N N R u u = u N N R u u
199 81 105 subge0d φ u N 1 + L E N 0 u N N u
200 83 199 mpbird φ u N 1 + L E N 0 u N
201 106 82 200 divge0d φ u N 1 + L E N 0 u N N
202 107 201 absidd φ u N 1 + L E N u N N = u N N
203 202 oveq1d φ u N 1 + L E N u N N R u u = u N N R u u
204 196 198 203 3eqtrd φ u N 1 + L E N u N N R u u = u N N R u u
205 154 165 166 absdivd φ u N 1 + L E N R u R N N = R u R N N
206 82 rprege0d φ u N 1 + L E N N 0 N
207 absid N 0 N N = N
208 206 207 syl φ u N 1 + L E N N = N
209 208 oveq2d φ u N 1 + L E N R u R N N = R u R N N
210 205 209 eqtrd φ u N 1 + L E N R u R N N = R u R N N
211 204 210 oveq12d φ u N 1 + L E N u N N R u u + R u R N N = u N N R u u + R u R N N
212 163 194 211 3brtr3d φ u N 1 + L E N R u u R N N u N N R u u + R u R N N
213 106 148 readdcld φ u N 1 + L E N u N + ψ u - ψ N
214 213 82 rerpdivcld φ u N 1 + L E N u N + ψ u - ψ N N
215 148 recnd φ u N 1 + L E N ψ u ψ N
216 165 164 subcld φ u N 1 + L E N N u
217 215 216 abstrid φ u N 1 + L E N ψ u ψ N + N - u ψ u ψ N + N u
218 1 pntrval u + R u = ψ u u
219 84 218 syl φ u N 1 + L E N R u = ψ u u
220 1 pntrval N + R N = ψ N N
221 82 220 syl φ u N 1 + L E N R N = ψ N N
222 219 221 oveq12d φ u N 1 + L E N R u R N = ψ u - u - ψ N N
223 145 recnd φ u N 1 + L E N ψ u
224 147 recnd φ u N 1 + L E N ψ N
225 subadd4 ψ u ψ N u N ψ u - ψ N - u N = ψ u + N - ψ N + u
226 sub4 ψ u ψ N u N ψ u - ψ N - u N = ψ u - u - ψ N N
227 addsub4 ψ u N ψ N u ψ u + N - ψ N + u = ψ u ψ N + N - u
228 227 an42s ψ u ψ N u N ψ u + N - ψ N + u = ψ u ψ N + N - u
229 225 226 228 3eqtr3d ψ u ψ N u N ψ u - u - ψ N N = ψ u ψ N + N - u
230 223 224 164 165 229 syl22anc φ u N 1 + L E N ψ u - u - ψ N N = ψ u ψ N + N - u
231 222 230 eqtr2d φ u N 1 + L E N ψ u ψ N + N - u = R u R N
232 231 fveq2d φ u N 1 + L E N ψ u ψ N + N - u = R u R N
233 106 recnd φ u N 1 + L E N u N
234 chpwordi N u N u ψ N ψ u
235 105 81 83 234 syl3anc φ u N 1 + L E N ψ N ψ u
236 147 145 235 abssubge0d φ u N 1 + L E N ψ u ψ N = ψ u ψ N
237 105 81 83 abssuble0d φ u N 1 + L E N N u = u N
238 236 237 oveq12d φ u N 1 + L E N ψ u ψ N + N u = ψ u ψ N + u - N
239 215 233 238 comraddd φ u N 1 + L E N ψ u ψ N + N u = u N + ψ u - ψ N
240 217 232 239 3brtr3d φ u N 1 + L E N R u R N u N + ψ u - ψ N
241 155 213 82 240 lediv1dd φ u N 1 + L E N R u R N N u N + ψ u - ψ N N
242 156 214 151 241 leadd2dd φ u N 1 + L E N u N N R u u + R u R N N u N N R u u + u N + ψ u - ψ N N
243 151 recnd φ u N 1 + L E N u N N R u u
244 149 recnd φ u N 1 + L E N ψ u ψ N N
245 243 197 244 addassd φ u N 1 + L E N u N N R u u + u N N + ψ u ψ N N = u N N R u u + u N N + ψ u ψ N N
246 90 recnd φ u N 1 + L E N R u u
247 197 246 174 adddid φ u N 1 + L E N u N N R u u + 1 = u N N R u u + u N N 1
248 197 mulid1d φ u N 1 + L E N u N N 1 = u N N
249 248 oveq2d φ u N 1 + L E N u N N R u u + u N N 1 = u N N R u u + u N N
250 247 249 eqtrd φ u N 1 + L E N u N N R u u + 1 = u N N R u u + u N N
251 250 oveq1d φ u N 1 + L E N u N N R u u + 1 + ψ u ψ N N = u N N R u u + u N N + ψ u ψ N N
252 233 215 165 166 divdird φ u N 1 + L E N u N + ψ u - ψ N N = u N N + ψ u ψ N N
253 252 oveq2d φ u N 1 + L E N u N N R u u + u N + ψ u - ψ N N = u N N R u u + u N N + ψ u ψ N N
254 245 251 253 3eqtr4d φ u N 1 + L E N u N N R u u + 1 + ψ u ψ N N = u N N R u u + u N + ψ u - ψ N N
255 242 254 breqtrrd φ u N 1 + L E N u N N R u u + R u R N N u N N R u u + 1 + ψ u ψ N N
256 97 157 150 212 255 letrd φ u N 1 + L E N R u u R N N u N N R u u + 1 + ψ u ψ N N
257 remulcl 2 u N N 2 u N N
258 29 107 257 sylancr φ u N 1 + L E N 2 u N N
259 258 139 readdcld φ u N 1 + L E N 2 u N N + T log N
260 remulcl 2 u N 2 u N
261 29 106 260 sylancr φ u N 1 + L E N 2 u N
262 105 138 rerpdivcld φ u N 1 + L E N N log N
263 113 262 remulcld φ u N 1 + L E N T N log N
264 261 263 readdcld φ u N 1 + L E N 2 u N + T N log N
265 fveq2 y = u ψ y = ψ u
266 265 oveq1d y = u ψ y ψ N = ψ u ψ N
267 oveq1 y = u y N = u N
268 267 oveq2d y = u 2 y N = 2 u N
269 268 oveq1d y = u 2 y N + T N log N = 2 u N + T N log N
270 266 269 breq12d y = u ψ y ψ N 2 y N + T N log N ψ u ψ N 2 u N + T N log N
271 id x = N x = N
272 oveq2 x = N 2 x = 2 N
273 271 272 oveq12d x = N x 2 x = N 2 N
274 fveq2 x = N ψ x = ψ N
275 274 oveq2d x = N ψ y ψ x = ψ y ψ N
276 oveq2 x = N y x = y N
277 276 oveq2d x = N 2 y x = 2 y N
278 fveq2 x = N log x = log N
279 271 278 oveq12d x = N x log x = N log N
280 279 oveq2d x = N T x log x = T N log N
281 277 280 oveq12d x = N 2 y x + T x log x = 2 y N + T N log N
282 275 281 breq12d x = N ψ y ψ x 2 y x + T x log x ψ y ψ N 2 y N + T N log N
283 273 282 raleqbidv x = N y x 2 x ψ y ψ x 2 y x + T x log x y N 2 N ψ y ψ N 2 y N + T N log N
284 12 adantr φ u N 1 + L E N x 1 +∞ y x 2 x ψ y ψ x 2 y x + T x log x
285 1xr 1 *
286 elioopnf 1 * N 1 +∞ N 1 < N
287 285 286 ax-mp N 1 +∞ N 1 < N
288 105 137 287 sylanbrc φ u N 1 + L E N N 1 +∞
289 283 284 288 rspcdva φ u N 1 + L E N y N 2 N ψ y ψ N 2 y N + T N log N
290 28 adantr φ u N 1 + L E N 1 + L E N
291 31 adantr φ u N 1 + L E N 2 N
292 80 simp3d φ u N 1 + L E N u 1 + L E N
293 ltle 1 + L E 2 1 + L E < 2 1 + L E 2
294 26 29 293 sylancl φ 1 + L E < 2 1 + L E 2
295 67 294 mpd φ 1 + L E 2
296 295 adantr φ u N 1 + L E N 1 + L E 2
297 26 adantr φ u N 1 + L E N 1 + L E
298 29 a1i φ u N 1 + L E N 2
299 297 298 82 lemul1d φ u N 1 + L E N 1 + L E 2 1 + L E N 2 N
300 296 299 mpbid φ u N 1 + L E N 1 + L E N 2 N
301 81 290 291 292 300 letrd φ u N 1 + L E N u 2 N
302 elicc2 N 2 N u N 2 N u N u u 2 N
303 105 291 302 syl2anc φ u N 1 + L E N u N 2 N u N u u 2 N
304 81 83 301 303 mpbir3and φ u N 1 + L E N u N 2 N
305 270 289 304 rspcdva φ u N 1 + L E N ψ u ψ N 2 u N + T N log N
306 148 264 82 305 lediv1dd φ u N 1 + L E N ψ u ψ N N 2 u N + T N log N N
307 261 recnd φ u N 1 + L E N 2 u N
308 11 adantr φ u N 1 + L E N T +
309 308 rpred φ u N 1 + L E N T
310 309 262 remulcld φ u N 1 + L E N T N log N
311 310 recnd φ u N 1 + L E N T N log N
312 divdir 2 u N T N log N N N 0 2 u N + T N log N N = 2 u N N + T N log N N
313 307 311 177 312 syl3anc φ u N 1 + L E N 2 u N + T N log N N = 2 u N N + T N log N N
314 2cnd φ u N 1 + L E N 2
315 314 233 165 166 divassd φ u N 1 + L E N 2 u N N = 2 u N N
316 113 recnd φ u N 1 + L E N T
317 138 rpcnne0d φ u N 1 + L E N log N log N 0
318 div12 T N log N log N 0 T N log N = N T log N
319 316 165 317 318 syl3anc φ u N 1 + L E N T N log N = N T log N
320 319 oveq1d φ u N 1 + L E N T N log N N = N T log N N
321 308 138 rpdivcld φ u N 1 + L E N T log N +
322 321 rpcnd φ u N 1 + L E N T log N
323 322 165 166 divcan3d φ u N 1 + L E N N T log N N = T log N
324 320 323 eqtrd φ u N 1 + L E N T N log N N = T log N
325 315 324 oveq12d φ u N 1 + L E N 2 u N N + T N log N N = 2 u N N + T log N
326 313 325 eqtrd φ u N 1 + L E N 2 u N + T N log N N = 2 u N N + T log N
327 306 326 breqtrd φ u N 1 + L E N ψ u ψ N N 2 u N N + T log N
328 149 259 143 327 leadd2dd φ u N 1 + L E N u N N R u u + 1 + ψ u ψ N N u N N R u u + 1 + 2 u N N + T log N
329 143 recnd φ u N 1 + L E N u N N R u u + 1
330 258 recnd φ u N 1 + L E N 2 u N N
331 139 recnd φ u N 1 + L E N T log N
332 329 330 331 addassd φ u N 1 + L E N u N N R u u + 1 + 2 u N N + T log N = u N N R u u + 1 + 2 u N N + T log N
333 2cn 2
334 mulcom 2 u N N 2 u N N = u N N 2
335 333 197 334 sylancr φ u N 1 + L E N 2 u N N = u N N 2
336 335 oveq2d φ u N 1 + L E N u N N R u u + 1 + 2 u N N = u N N R u u + 1 + u N N 2
337 142 recnd φ u N 1 + L E N R u u + 1
338 197 337 314 adddid φ u N 1 + L E N u N N R u u + 1 + 2 = u N N R u u + 1 + u N N 2
339 246 174 314 addassd φ u N 1 + L E N R u u + 1 + 2 = R u u + 1 + 2
340 1p2e3 1 + 2 = 3
341 340 oveq2i R u u + 1 + 2 = R u u + 3
342 339 341 eqtrdi φ u N 1 + L E N R u u + 1 + 2 = R u u + 3
343 342 oveq2d φ u N 1 + L E N u N N R u u + 1 + 2 = u N N R u u + 3
344 336 338 343 3eqtr2d φ u N 1 + L E N u N N R u u + 1 + 2 u N N = u N N R u u + 3
345 344 oveq1d φ u N 1 + L E N u N N R u u + 1 + 2 u N N + T log N = u N N R u u + 3 + T log N
346 332 345 eqtr3d φ u N 1 + L E N u N N R u u + 1 + 2 u N N + T log N = u N N R u u + 3 + T log N
347 328 346 breqtrd φ u N 1 + L E N u N N R u u + 1 + ψ u ψ N N u N N R u u + 3 + T log N
348 97 150 140 256 347 letrd φ u N 1 + L E N R u u R N N u N N R u u + 3 + T log N
349 104 rehalfcld φ u N 1 + L E N E 2 2
350 81 297 82 ledivmul2d φ u N 1 + L E N u N 1 + L E u 1 + L E N
351 292 350 mpbird φ u N 1 + L E N u N 1 + L E
352 ax-1cn 1
353 25 adantr φ u N 1 + L E N L E
354 353 recnd φ u N 1 + L E N L E
355 addcom 1 L E 1 + L E = L E + 1
356 352 354 355 sylancr φ u N 1 + L E N 1 + L E = L E + 1
357 351 356 breqtrd φ u N 1 + L E N u N L E + 1
358 172 114 353 lesubaddd φ u N 1 + L E N u N 1 L E u N L E + 1
359 357 358 mpbird φ u N 1 + L E N u N 1 L E
360 170 359 eqbrtrd φ u N 1 + L E N u N N L E
361 2 adantr φ u N 1 + L E N A +
362 361 rpred φ u N 1 + L E N A
363 fveq2 x = u R x = R u
364 id x = u x = u
365 363 364 oveq12d x = u R x x = R u u
366 365 fveq2d x = u R x x = R u u
367 366 breq1d x = u R x x A R u u A
368 4 adantr φ u N 1 + L E N x + R x x A
369 367 368 84 rspcdva φ u N 1 + L E N R u u A
370 90 362 109 369 leadd1dd φ u N 1 + L E N R u u + 3 A + 3
371 107 201 jca φ u N 1 + L E N u N N 0 u N N
372 3rp 3 +
373 rpaddcl A + 3 + A + 3 +
374 361 372 373 sylancl φ u N 1 + L E N A + 3 +
375 374 rprege0d φ u N 1 + L E N A + 3 0 A + 3
376 lemul12b u N N 0 u N N L E R u u + 3 A + 3 0 A + 3 u N N L E R u u + 3 A + 3 u N N R u u + 3 L E A + 3
377 371 353 110 375 376 syl22anc φ u N 1 + L E N u N N L E R u u + 3 A + 3 u N N R u u + 3 L E A + 3
378 360 370 377 mp2and φ u N 1 + L E N u N N R u u + 3 L E A + 3
379 43 adantr φ u N 1 + L E N E +
380 115 116 mp1i φ u N 1 + L E N 4 +
381 379 380 rpdivcld φ u N 1 + L E N E 4 +
382 381 rpcnd φ u N 1 + L E N E 4
383 374 rpcnd φ u N 1 + L E N A + 3
384 374 rpne0d φ u N 1 + L E N A + 3 0
385 382 383 384 divcan1d φ u N 1 + L E N E 4 A + 3 A + 3 = E 4
386 24 recnd φ E
387 386 adantr φ u N 1 + L E N E
388 380 rpcnd φ u N 1 + L E N 4
389 380 rpne0d φ u N 1 + L E N 4 0
390 387 388 389 divrec2d φ u N 1 + L E N E 4 = 1 4 E
391 390 oveq1d φ u N 1 + L E N E 4 A + 3 = 1 4 E A + 3
392 4cn 4
393 4ne0 4 0
394 392 393 reccli 1 4
395 394 a1i φ u N 1 + L E N 1 4
396 395 387 383 384 div23d φ u N 1 + L E N 1 4 E A + 3 = 1 4 A + 3 E
397 3 oveq1i L E = 1 4 A + 3 E
398 396 397 eqtr4di φ u N 1 + L E N 1 4 E A + 3 = L E
399 391 398 eqtr2d φ u N 1 + L E N L E = E 4 A + 3
400 399 oveq1d φ u N 1 + L E N L E A + 3 = E 4 A + 3 A + 3
401 2ne0 2 0
402 401 a1i φ u N 1 + L E N 2 0
403 387 314 314 402 402 divdiv1d φ u N 1 + L E N E 2 2 = E 2 2
404 2t2e4 2 2 = 4
405 404 oveq2i E 2 2 = E 4
406 403 405 eqtrdi φ u N 1 + L E N E 2 2 = E 4
407 385 400 406 3eqtr4d φ u N 1 + L E N L E A + 3 = E 2 2
408 378 407 breqtrd φ u N 1 + L E N u N N R u u + 3 E 2 2
409 120 adantr φ u N 1 + L E N T E 4
410 138 rpred φ u N 1 + L E N log N
411 82 reeflogd φ u N 1 + L E N e log N = N
412 136 411 breqtrrd φ u N 1 + L E N e T E 4 < e log N
413 eflt T E 4 log N T E 4 < log N e T E 4 < e log N
414 409 410 413 syl2anc φ u N 1 + L E N T E 4 < log N e T E 4 < e log N
415 412 414 mpbird φ u N 1 + L E N T E 4 < log N
416 409 410 415 ltled φ u N 1 + L E N T E 4 log N
417 113 381 138 416 lediv23d φ u N 1 + L E N T log N E 4
418 417 406 breqtrrd φ u N 1 + L E N T log N E 2 2
419 111 139 349 349 408 418 le2addd φ u N 1 + L E N u N N R u u + 3 + T log N E 2 2 + E 2 2
420 104 recnd φ u N 1 + L E N E 2
421 420 2halvesd φ u N 1 + L E N E 2 2 + E 2 2 = E 2
422 419 421 breqtrd φ u N 1 + L E N u N N R u u + 3 + T log N E 2
423 97 140 104 348 422 letrd φ u N 1 + L E N R u u R N N E 2
424 16 simprd φ R N N E 2
425 424 adantr φ u N 1 + L E N R N N E 2
426 97 98 104 104 423 425 le2addd φ u N 1 + L E N R u u R N N + R N N E 2 + E 2
427 387 2halvesd φ u N 1 + L E N E 2 + E 2 = E
428 426 427 breqtrd φ u N 1 + L E N R u u R N N + R N N E
429 90 99 100 103 428 letrd φ u N 1 + L E N R u u E
430 429 ralrimiva φ u N 1 + L E N R u u E
431 19 79 430 jca31 φ Y < N 1 + L E N < M Y u N 1 + L E N R u u E
432 breq2 z = N Y < z Y < N
433 oveq2 z = N 1 + L E z = 1 + L E N
434 433 breq1d z = N 1 + L E z < M Y 1 + L E N < M Y
435 432 434 anbi12d z = N Y < z 1 + L E z < M Y Y < N 1 + L E N < M Y
436 id z = N z = N
437 436 433 oveq12d z = N z 1 + L E z = N 1 + L E N
438 437 raleqdv z = N u z 1 + L E z R u u E u N 1 + L E N R u u E
439 435 438 anbi12d z = N Y < z 1 + L E z < M Y u z 1 + L E z R u u E Y < N 1 + L E N < M Y u N 1 + L E N R u u E
440 439 rspcev N + Y < N 1 + L E N < M Y u N 1 + L E N R u u E z + Y < z 1 + L E z < M Y u z 1 + L E z R u u E
441 17 431 440 syl2anc φ z + Y < z 1 + L E z < M Y u z 1 + L E z R u u E