Metamath Proof Explorer


Theorem pntibndlem2a

Description: Lemma for pntibndlem2 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntibnd.r R = a + ψ a a
pntibndlem1.1 φ A +
pntibndlem1.l L = 1 4 A + 3
pntibndlem3.2 φ x + R x x A
pntibndlem3.3 φ B +
pntibndlem3.k K = e B E 2
pntibndlem3.c C = 2 B + log 2
pntibndlem3.4 φ E 0 1
pntibndlem3.6 φ Z +
pntibndlem2.10 φ N
Assertion pntibndlem2a φ u N 1 + L E N u N u u 1 + L E N

Proof

Step Hyp Ref Expression
1 pntibnd.r R = a + ψ a a
2 pntibndlem1.1 φ A +
3 pntibndlem1.l L = 1 4 A + 3
4 pntibndlem3.2 φ x + R x x A
5 pntibndlem3.3 φ B +
6 pntibndlem3.k K = e B E 2
7 pntibndlem3.c C = 2 B + log 2
8 pntibndlem3.4 φ E 0 1
9 pntibndlem3.6 φ Z +
10 pntibndlem2.10 φ N
11 10 nnred φ N
12 1red φ 1
13 ioossre 0 1
14 1 2 3 pntibndlem1 φ L 0 1
15 13 14 sselid φ L
16 13 8 sselid φ E
17 15 16 remulcld φ L E
18 12 17 readdcld φ 1 + L E
19 18 11 remulcld φ 1 + L E N
20 elicc2 N 1 + L E N u N 1 + L E N u N u u 1 + L E N
21 11 19 20 syl2anc φ u N 1 + L E N u N u u 1 + L E N
22 21 biimpa φ u N 1 + L E N u N u u 1 + L E N