Metamath Proof Explorer


Theorem pntlema

Description: Lemma for pnt . Closure for the constants used in the proof. The mammoth expression W is a number large enough to satisfy all the lower bounds needed for Z . For comparison with Equation 10.6.27 of Shapiro, p. 434, Y is x_2, X is x_1, C is the big-O constant in Equation 10.6.29 of Shapiro, p. 435, and W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of Shapiro, p. 436. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
Assertion pntlema φ W +

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 11 simpld φ Y +
16 4nn 4
17 nnrp 4 4 +
18 16 17 ax-mp 4 +
19 1 2 3 4 5 6 pntlemd φ L + D + F +
20 19 simp1d φ L +
21 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
22 21 simp1d φ E +
23 20 22 rpmulcld φ L E +
24 rpdivcl 4 + L E + 4 L E +
25 18 23 24 sylancr φ 4 L E +
26 15 25 rpaddcld φ Y + 4 L E +
27 2z 2
28 rpexpcl Y + 4 L E + 2 Y + 4 L E 2 +
29 26 27 28 sylancl φ Y + 4 L E 2 +
30 12 simpld φ X +
31 21 simp2d φ K +
32 rpexpcl K + 2 K 2 +
33 31 27 32 sylancl φ K 2 +
34 30 33 rpmulcld φ X K 2 +
35 4z 4
36 rpexpcl X K 2 + 4 X K 2 4 +
37 34 35 36 sylancl φ X K 2 4 +
38 3nn0 3 0
39 2nn 2
40 38 39 decnncl 32
41 nnrp 32 32 +
42 40 41 ax-mp 32 +
43 rpmulcl 32 + B + 32 B +
44 42 3 43 sylancr φ 32 B +
45 21 simp3d φ E 0 1 1 < K U E +
46 45 simp3d φ U E +
47 rpexpcl E + 2 E 2 +
48 22 27 47 sylancl φ E 2 +
49 20 48 rpmulcld φ L E 2 +
50 46 49 rpmulcld φ U E L E 2 +
51 44 50 rpdivcld φ 32 B U E L E 2 +
52 3rp 3 +
53 rpmulcl U + 3 + U 3 +
54 7 52 53 sylancl φ U 3 +
55 54 13 rpaddcld φ U 3 + C +
56 51 55 rpmulcld φ 32 B U E L E 2 U 3 + C +
57 56 rpred φ 32 B U E L E 2 U 3 + C
58 57 rpefcld φ e 32 B U E L E 2 U 3 + C +
59 37 58 rpaddcld φ X K 2 4 + e 32 B U E L E 2 U 3 + C +
60 29 59 rpaddcld φ Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C +
61 14 60 eqeltrid φ W +