Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|
2 |
|
pntlem1.a |
|
3 |
|
pntlem1.b |
|
4 |
|
pntlem1.l |
|
5 |
|
pntlem1.d |
|
6 |
|
pntlem1.f |
|
7 |
|
pntlem1.u |
|
8 |
|
pntlem1.u2 |
|
9 |
|
pntlem1.e |
|
10 |
|
pntlem1.k |
|
11 |
|
pntlem1.y |
|
12 |
|
pntlem1.x |
|
13 |
|
pntlem1.c |
|
14 |
|
pntlem1.w |
|
15 |
11
|
simpld |
|
16 |
|
4nn |
|
17 |
|
nnrp |
|
18 |
16 17
|
ax-mp |
|
19 |
1 2 3 4 5 6
|
pntlemd |
|
20 |
19
|
simp1d |
|
21 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
22 |
21
|
simp1d |
|
23 |
20 22
|
rpmulcld |
|
24 |
|
rpdivcl |
|
25 |
18 23 24
|
sylancr |
|
26 |
15 25
|
rpaddcld |
|
27 |
|
2z |
|
28 |
|
rpexpcl |
|
29 |
26 27 28
|
sylancl |
|
30 |
12
|
simpld |
|
31 |
21
|
simp2d |
|
32 |
|
rpexpcl |
|
33 |
31 27 32
|
sylancl |
|
34 |
30 33
|
rpmulcld |
|
35 |
|
4z |
|
36 |
|
rpexpcl |
|
37 |
34 35 36
|
sylancl |
|
38 |
|
3nn0 |
|
39 |
|
2nn |
|
40 |
38 39
|
decnncl |
|
41 |
|
nnrp |
|
42 |
40 41
|
ax-mp |
|
43 |
|
rpmulcl |
|
44 |
42 3 43
|
sylancr |
|
45 |
21
|
simp3d |
|
46 |
45
|
simp3d |
|
47 |
|
rpexpcl |
|
48 |
22 27 47
|
sylancl |
|
49 |
20 48
|
rpmulcld |
|
50 |
46 49
|
rpmulcld |
|
51 |
44 50
|
rpdivcld |
|
52 |
|
3rp |
|
53 |
|
rpmulcl |
|
54 |
7 52 53
|
sylancl |
|
55 |
54 13
|
rpaddcld |
|
56 |
51 55
|
rpmulcld |
|
57 |
56
|
rpred |
|
58 |
57
|
rpefcld |
|
59 |
37 58
|
rpaddcld |
|
60 |
29 59
|
rpaddcld |
|
61 |
14 60
|
eqeltrid |
|