| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  | 
						
							| 2 |  | pntlem1.a |  | 
						
							| 3 |  | pntlem1.b |  | 
						
							| 4 |  | pntlem1.l |  | 
						
							| 5 |  | pntlem1.d |  | 
						
							| 6 |  | pntlem1.f |  | 
						
							| 7 |  | ioossre |  | 
						
							| 8 | 7 4 | sselid |  | 
						
							| 9 |  | eliooord |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 | 10 | simpld |  | 
						
							| 12 | 8 11 | elrpd |  | 
						
							| 13 |  | 1rp |  | 
						
							| 14 |  | rpaddcl |  | 
						
							| 15 | 2 13 14 | sylancl |  | 
						
							| 16 | 5 15 | eqeltrid |  | 
						
							| 17 |  | 1re |  | 
						
							| 18 |  | ltaddrp |  | 
						
							| 19 | 17 2 18 | sylancr |  | 
						
							| 20 | 2 | rpcnd |  | 
						
							| 21 |  | ax-1cn |  | 
						
							| 22 |  | addcom |  | 
						
							| 23 | 20 21 22 | sylancl |  | 
						
							| 24 | 5 23 | eqtrid |  | 
						
							| 25 | 19 24 | breqtrrd |  | 
						
							| 26 | 16 | recgt1d |  | 
						
							| 27 | 25 26 | mpbid |  | 
						
							| 28 | 16 | rprecred |  | 
						
							| 29 |  | difrp |  | 
						
							| 30 | 28 17 29 | sylancl |  | 
						
							| 31 | 27 30 | mpbid |  | 
						
							| 32 |  | 3nn0 |  | 
						
							| 33 |  | 2nn |  | 
						
							| 34 | 32 33 | decnncl |  | 
						
							| 35 |  | nnrp |  | 
						
							| 36 | 34 35 | ax-mp |  | 
						
							| 37 |  | rpmulcl |  | 
						
							| 38 | 36 3 37 | sylancr |  | 
						
							| 39 | 12 38 | rpdivcld |  | 
						
							| 40 |  | 2z |  | 
						
							| 41 |  | rpexpcl |  | 
						
							| 42 | 16 40 41 | sylancl |  | 
						
							| 43 | 39 42 | rpdivcld |  | 
						
							| 44 | 31 43 | rpmulcld |  | 
						
							| 45 | 6 44 | eqeltrid |  | 
						
							| 46 | 12 16 45 | 3jca |  |