| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
|
pntlem1.y |
|
| 12 |
|
pntlem1.x |
|
| 13 |
|
pntlem1.c |
|
| 14 |
|
pntlem1.w |
|
| 15 |
|
pntleme.U |
|
| 16 |
|
pntleme.K |
|
| 17 |
|
pntleme.C |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
pntlema |
|
| 19 |
2
|
adantr |
|
| 20 |
3
|
adantr |
|
| 21 |
4
|
adantr |
|
| 22 |
7
|
adantr |
|
| 23 |
8
|
adantr |
|
| 24 |
11
|
adantr |
|
| 25 |
12
|
adantr |
|
| 26 |
13
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
15
|
adantr |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
breq2d |
|
| 33 |
32
|
anbi2d |
|
| 34 |
33
|
anbi1d |
|
| 35 |
34
|
rexbidv |
|
| 36 |
35
|
ralbidv |
|
| 37 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
| 38 |
37
|
simp2d |
|
| 39 |
38
|
rpxrd |
|
| 40 |
|
pnfxr |
|
| 41 |
40
|
a1i |
|
| 42 |
38
|
rpred |
|
| 43 |
42
|
ltpnfd |
|
| 44 |
|
lbico1 |
|
| 45 |
39 41 43 44
|
syl3anc |
|
| 46 |
36 16 45
|
rspcdva |
|
| 47 |
46
|
adantr |
|
| 48 |
17
|
adantr |
|
| 49 |
1 19 20 21 5 6 22 23 9 10 24 25 26 14 27 28 29 30 47 48
|
pntlemo |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
raleqdv |
|
| 53 |
52
|
rspcev |
|
| 54 |
18 50 53
|
syl2anc |
|