Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|
2 |
|
pntlem1.a |
|
3 |
|
pntlem1.b |
|
4 |
|
pntlem1.l |
|
5 |
|
pntlem1.d |
|
6 |
|
pntlem1.f |
|
7 |
|
pntlem1.u |
|
8 |
|
pntlem1.u2 |
|
9 |
|
pntlem1.e |
|
10 |
|
pntlem1.k |
|
11 |
|
pntlem1.y |
|
12 |
|
pntlem1.x |
|
13 |
|
pntlem1.c |
|
14 |
|
pntlem1.w |
|
15 |
|
pntlem1.z |
|
16 |
|
pntlem1.m |
|
17 |
|
pntlem1.n |
|
18 |
12
|
simpld |
|
19 |
18
|
rpred |
|
20 |
|
1red |
|
21 |
11
|
simpld |
|
22 |
21
|
rpred |
|
23 |
11
|
simprd |
|
24 |
12
|
simprd |
|
25 |
20 22 19 23 24
|
lelttrd |
|
26 |
19 25
|
rplogcld |
|
27 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
28 |
27
|
simp2d |
|
29 |
28
|
rpred |
|
30 |
27
|
simp3d |
|
31 |
30
|
simp2d |
|
32 |
29 31
|
rplogcld |
|
33 |
26 32
|
rpdivcld |
|
34 |
33
|
rprege0d |
|
35 |
|
flge0nn0 |
|
36 |
|
nn0p1nn |
|
37 |
34 35 36
|
3syl |
|
38 |
16 37
|
eqeltrid |
|
39 |
38
|
nnzd |
|
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
41 |
40
|
simp1d |
|
42 |
41
|
relogcld |
|
43 |
42 32
|
rerpdivcld |
|
44 |
43
|
rehalfcld |
|
45 |
44
|
flcld |
|
46 |
17 45
|
eqeltrid |
|
47 |
|
0red |
|
48 |
|
4nn |
|
49 |
|
nndivre |
|
50 |
43 48 49
|
sylancl |
|
51 |
46
|
zred |
|
52 |
38
|
nnred |
|
53 |
51 52
|
resubcld |
|
54 |
41
|
rpred |
|
55 |
40
|
simp2d |
|
56 |
55
|
simp1d |
|
57 |
54 56
|
rplogcld |
|
58 |
57 32
|
rpdivcld |
|
59 |
|
4re |
|
60 |
|
4pos |
|
61 |
59 60
|
elrpii |
|
62 |
|
rpdivcl |
|
63 |
58 61 62
|
sylancl |
|
64 |
63
|
rpge0d |
|
65 |
50
|
recnd |
|
66 |
38
|
nncnd |
|
67 |
|
1cnd |
|
68 |
65 66 67
|
addassd |
|
69 |
52 20
|
readdcld |
|
70 |
50 69
|
readdcld |
|
71 |
|
peano2re |
|
72 |
51 71
|
syl |
|
73 |
33
|
rpred |
|
74 |
|
2re |
|
75 |
74
|
a1i |
|
76 |
73 75
|
readdcld |
|
77 |
|
reflcl |
|
78 |
73 77
|
syl |
|
79 |
78
|
recnd |
|
80 |
79 67 67
|
addassd |
|
81 |
16
|
oveq1i |
|
82 |
|
df-2 |
|
83 |
82
|
oveq2i |
|
84 |
80 81 83
|
3eqtr4g |
|
85 |
|
flle |
|
86 |
73 85
|
syl |
|
87 |
78 73 75 86
|
leadd1dd |
|
88 |
84 87
|
eqbrtrd |
|
89 |
40
|
simp3d |
|
90 |
89
|
simp2d |
|
91 |
69 76 50 88 90
|
letrd |
|
92 |
69 50 50 91
|
leadd2dd |
|
93 |
43
|
recnd |
|
94 |
|
2cnd |
|
95 |
|
2ne0 |
|
96 |
95
|
a1i |
|
97 |
93 94 94 96 96
|
divdiv1d |
|
98 |
|
2t2e4 |
|
99 |
98
|
oveq2i |
|
100 |
97 99
|
eqtrdi |
|
101 |
100
|
oveq2d |
|
102 |
44
|
recnd |
|
103 |
102 94 96
|
divcan2d |
|
104 |
65
|
2timesd |
|
105 |
101 103 104
|
3eqtr3d |
|
106 |
92 105
|
breqtrrd |
|
107 |
|
fllep1 |
|
108 |
44 107
|
syl |
|
109 |
17
|
oveq1i |
|
110 |
108 109
|
breqtrrdi |
|
111 |
70 44 72 106 110
|
letrd |
|
112 |
68 111
|
eqbrtrd |
|
113 |
50 52
|
readdcld |
|
114 |
113 51 20
|
leadd1d |
|
115 |
112 114
|
mpbird |
|
116 |
|
leaddsub |
|
117 |
50 52 51 116
|
syl3anc |
|
118 |
115 117
|
mpbid |
|
119 |
47 50 53 64 118
|
letrd |
|
120 |
51 52
|
subge0d |
|
121 |
119 120
|
mpbid |
|
122 |
|
eluz2 |
|
123 |
39 46 121 122
|
syl3anbrc |
|
124 |
38 123 118
|
3jca |
|